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Chapter 1

What Is Inverse Theory

This course is an introduction to some of the balkanized family of techniques
and philosophies that reside under the umbrella of inverse theory. In this
section we present the central threads that bind all of these singular items
together in a harmonious whole. That’s impossible of course, but what we
will do is provide a point of view that, while it will break from time-to-
time, is good enough to be going on with. The goal of this chapter is to
introduce a real inverse problem and explore some of the issues that arise in
a non-technical way. Later, we explore the resulting complications in greater
depth.

Suppose that we find ourselves on a gleaming white beach somewhere in the
Caribbean with

e time on our hands,

e a gravimeter (a little doodad that measures changes in gravitational
acceleration), and

e the certain conviction that a golden blob of pirate booty lies somewhere
beneath us.

In pursuit of wealth we make a series of measurements of gravity at several
points along the surface. Our mental picture looks like Figure 1.1. And
although we don’t know where the gold actually is, or what amount is present,
we're pretty sure something is there.

How can we use these observations to decide where the pirate gold lies and
how much is present? It’s not enough to know that gold (p = 19.3gm/cm?)
is denser than sand (p = 2.2gm/cm?) and that the observed gravity should

@



2 What Is Inverse Theory

Measurements

Surface

Sand

Figure 1.1: We think that gold is buried under the sand so we make mea-
surements of gravity at various locations on the surface.

be greater above our future wealth. Suppose that we observe relative gravity
values of (from left to right)

22,34, 30,24, and 554 gals

respectively.! There’s no simple formula, (at least not that we know) into
which we can plug five observed gravity observations and receive in return
the depth and size of our target.

So what shall we do? Well one thing we do know is

_ [ Gp(r))

v —

o(r) av’ (1.1)
that is, Newtonian gravitation. (If you didn’t know it before, you know
it now.) Equation 1.1 relates the gravitational potential, ¢, to density, p.
Equation 1.1 has two interesting properties:

e it expresses something we think is true about the physics of a contin-
uum, and
e it can be turned into recipe, an algorithm which we can apply to a given

density field

So although we don’t know how to turn our gravity measurements into direct
information about the density in the earth beneath us, we do know how to

LA gal is a unit of acceleration equal to one centimeter per second per second. It is
named after Galileo but was first used in this century.

@



observed
want: eravity density
redicted
have: P , density
gravity

Figure 1.2: Inverse problems usually start with some procedure for predicting
the response of a physical system with known parameters. Then we ask: how
can we determine the unknown parameters from observed data?

go in the other direction: given the density in the earth beneath us, we know
how to predict the gravity field we should observe. Inverse theory begins
here, as in Figure 1.2.

For openers, we might write a computer program that accepts densities as
inputs and produces predicted gravity values as outputs. Once we have such
a beast we can play with different density values to see what kind of gravity
observations we would get. We might assume that the gold is a rectangular
block of the same dimensions as a standard pirate’s chest and we could move
the block to different locations, varying both depth and horizontal location,
to see if we can match our gravity observations.

Part of writing the gravity program is defining the types of density models
we're going to use. We'll use a simplified model of the beach that has a
perfectly flat surface, and has a subsurface that consists of a cluster of little
rectangles of variable density surrounded by sand with a constant density.
We’ve chosen the cluster of little rectangles to include all of the likely loca-
tions of the buried treasure. (Did we mention we have a manuscript fragment
which appears to be part of a pirate’s diary?) In order to model having the
buried treasure at a particular spot in the model we’ll set the density in those
rectangles to be equal to the density of gold and we’ll set the density in the
rest of the little rectangles to the density of sand. Here’s what the model
looks like: The x’s are the locations for which we’ll compute the gravita-
tional field. Notice that the values produced by our program are referred to
as predictions, rather than observations.

Now we have to get down to business and use our program to figure out
where the treasure is located. Suppose we embed our gravity program into

@



4 What Is Inverse Theory

predictions

surface \ \

X X X X X

unknown

sand

Figure 1.3: An idealized view of the beach. The surface is flat and the
subsurface consists of little blocks containing either sand or gold.

a larger program which will

e generate all possible models by trying all combinations of sand and gold
densities in our little rectangles, and

e compare the predicted gravity values to the observed gravity values and
tell us which models, if any, agreed well with the observations.

1.1 Too many models

The first problem is that there are forty-five little rectangles under our model

beach and so there are
2% ~ 3 x 10" (1.2)

models to inspect. If we can do a thousand models per second, it will still take
us about 1100 years to complete the search. It is almost always impossible
to examine more than the tiniest fraction of the possible answers (models)
in any interesting inverse calculation.

1.2 No unique answer

We have forty-five knobs to play with in our model (one for each little rect-
angle) and only five observations to match. It is very likely that there will
be more than one best-fitting model. This likelihood increases to near cer-
tainty once we admit the possibility of noise in the observations. There are
usually multiple possible answers to an inverse problem which cannot be
distinguished by the available observations.

@



1.3 Implausible models 5

relative

likelihood
it'sal here

someone else
found it

/ it'salittle bigger
/ than we thought

o 1 2 3 4 5 6 7 8
number of gold rectangles in model

Figure 1.4: Our preconceptions as to the number of bricks buried in the sand.
There is a possibility that someone has already dug up the gold, in which
case the number of gold blocks is zero. But we thing it’s most likely that
there are 6 gold blocks. Possibly 7, but definitely not 3, for example. Since
this preconception represents information we have independent of the gravity
data, or prior to the measurements, it’s an example of what is called a priori
information.

1.3 Implausible models

On the basis of outside information (which we can’t reproduce here because
we unfortunately left it back at the hotel), we think that the total treasure
was about the equivalent of six little rectangles worth of gold. We also think
that it was buried in a chest which is probably still intact (they really knew
how to make pirate’s chests back then). We can’t, however, be absolutely
certain of either belief because storms could have rearranged the beach or
broken the chest and scattered the gold about. It’s also possible that someone
else has already found it. Based on this information we think that some
models are more likely to be correct than others. If we attach a relative
likelihood to different number of gold rectangles, our prejudices might look
like Figure 1.4. You can imagine a single Olympic judge holding up a card
as each model is displayed.

Similarly, since we think the chest is probably still intact we favor models
which have all of the gold rectangles in the two-by-three arrangement typical
of pirate chests, and we will regard models with the gold spread widely as
less likely. Qualitatively, our thoughts tend towards some specification of the

@



6 What Is Inverse Theory

X X X plausible
X X X
X | x possible
X X X X
X
X X

X unlikely

X
X

Figure 1.5: Pirate chests were well made. And gold, being rather heavy, is
unlikely to move around much. So we think it’s mostly likely that the gold
bars are clustered together. It’s not impossible that the bars have become
dispersed, but it seems unlikely.

relative likelihood of models, even before we're made any observations, as
illustrated in Figure 1.5.2

This distinction is hard to capture in a quasi-quantitative way.

What we’ve called plausibility really amounts to information about the sub-
surface that is independent of the gravity observations. Here the information
was historic and took the form of prejudices about how likely certain model
configurations were with respect to one another. This information is inde-
pendent of, and should be used in addition to, the gravity observations we
have.

1.4 Observations are noisy

Most observations are subject to noise and gravity observations are particu-
larly delicate. If we have two models that produce predicted values that lie

2Information which is independent of the observations, such as that models with the
gold bars clustered are more likely than those in which the bars are dispersed, is called a
priori information. We will continually make the distinction between a priori (or simply
prior, meaning before) and a posteriori (or simply posterior, meaning after) information.
Posterior information is the direct result of the inferences we make from data and the prior

information.



1.5 The beach is not a model 7

within reasonable errors of the observed values, we probably don’t want to
put much emphasis on the possibility that one of the models may fit slightly
better than the other. Clearly learning what the observations have to tell us
requires that we take account of noise in the observations.

1.5 The beach is not a model

A stickier issue is that the real beach is definitely not one of the possible
models we consider. The real beach

e is three-dimensional,
e has an irregular surface,

e has objects in addition to sand and gold within it (bones and rum
bottles, for example)

e has an ocean nearby, and is embedded in a planet that has lots of mass
of its own and which is subject to perceptible gravitational attraction
by the Moon and Sun,

e clc

Some of these effects, such as the beach’s irregular surface and the gravita-
tional effects due to stuff other than the beach (ocean, earth, Moon, Sun),
we might try to eliminate by correcting the observations (it would probably
be more accurate to call it erroring the observations). We would change the
values we are trying to fit and, likely, increasing their error estimates. The
observational process looks more or less like Figure 1.6 The wonder of it is
that it works at all.

Other effects, such as the three-dimensionality of reality, we might handle by
altering the model to make each rectangle three-dimensional or by attaching
modeling errors to the predicted values.

1.6 Summary

Inverse Theory is concerned with the problem of making inferences about
physical systems from data (usually remotely sensed). Since nearly all data
are subject to some uncertainty, these inferences are usually statistical. Fur-
ther, since one can only record finitely many (noisy) data and since physical

@



8 What Is Inverse Theory

Nature

(real beach)

T

transducer

(gravimeter)
observed gravity

corrections

for reality corrected

observed

gravity

Figure 1.6: The path connecting nature and the corrected observations is
long and difficult.



1.7 Beach Example 9

systems are usually modeled by continuum equations, if there is a single
model that fits the data there will be an infinity of them. (A model is a pa-
rameterization of the system, usually a function.) To make these inferences
quantitative one must answer three fundamental questions. How accurately
are the data known? I.e., what does it mean to “fit” the data. How accu-
rately can we model the response of the system? In other words, have we
included all the physics in the model that contribute significantly to the data.
Finally, what is known about the system independent of the data? This is
called a priori information. Because for any sufficiently fine parameterization
of a system there will be unreasonable models that fit the data too, there
must be a systematic procedure for rejecting these unreasonable models. It
is conventional to think of Inverse Theory as involving the construction of
models (according to data fit or operator inversion). However, in this course
we prefer to think in terms of making inferences about models.

1.7 Beach Example

Here we show an example of the beach calculation. With the graphical
user interface shown in Figure 1.7 we can fiddle with the locations of the
gold/sand rectangles and visually try to match the “observed” data. For
this particular calculation, the true model has 6 buried gold bricks as shown
in Figure 1.7. In Figure 1.8 we show but one example of a model that
predicts the data essentially as well. The difference between the observed
and predicted data is not exactly zero, but given the noise that would be
present in our measurements, it’s almost certainly good enough. So we see
that two fundamentally different models predict the data about equally well.
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Figure 1.7: The true distribution of gold bricks.
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Figure 1.8: An unreasonable model that predicts the data.
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1.8 Computer Exercise

You will be given instructions on how to obtain an Xlisp-Stat program for
solving a simple geophysical inverse problem. The calculation is already set
up, all you have to do is push the buttons and see what happens. A screen-
dump of the program is shown in Figure 1.9. You will be able to select
the assumed level of noise in the data and the number of terms used in the
reconstruction of the solution. The exercise is simply to get logged onto the
computer and play with the VSP demao.
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Figure 1.9: The graphical user interface for a simple yet interesting inverse
calculation. By moving the slider bars you can select the assumed level of
noise in the data as well as the fraction of singular values used to construct
the solution. In the plot on the top left, you see the reconstructed velocity
model (P-wave velocity as a function of depth), on the right the observed
travel times and those predicted for this computed model, and below is the
control panel for the calculation. Over the course of the next few weeks, you
will learn in detail how this all works.
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Chapter 2

Example: A Vertical Seismic
Profile

Here we will look at a simple example of a geophysical inverse calculation.
The details are not important at this point. We will cover the technical
issues in due course. The goal here is simply to illustrate the fundamental
role of data uncertainties in any inverse calculation. Because of noise in
the data and the continuity of model paremeters, it is always true that if
there is a single model that fits the data, then there is an infinity of them.
Therefore when we take into account the uncertainty of data there is no such
thing as a uniquely solvable inverse problem. In the first example we will see
that a certain model feature is near the limit of the resolution of the data.
Depending on whether we are bold or conservative in assessing the errors of
our data, this feature will or will not be required to fit the data.

We use a vertical seismic profile (VSP—used in exploration seismology to im-
age the Earth’s near surface) experiment to illustrate how a fitted response
depends on the assumed noise level in the data. Figure 2.1 shows the geom-
etry of a VSP. A source of acoustic energy is at the surface near a vertical
bore-hole (left side). A string of receivers is lowered into a bore-hole, record-
ing the transit time of the down-going acoustic pulse. These transit times
are used to construct a “best-fitting” model of the velocity (or index of re-
fraction) as a function of depth v(z). There is no point in looking for lateral
variations in v since the rays propagate nearly vertically. If the Earth is not
laterally invariant, this assumption introduces a systematic error into the
calculation.

For each observation (and hence each ray) the forward problem is

1
t= ——dl.
/ray v(2)

@
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source
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Depth (m)
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Figure 2.1: Simple model of a vertical seismic profile (VSP). A source is
at the surface of the Earth near a vertical bore-hole (left side). A string
of receivers is lowered into the bore-hole, recording the transit time of a
down-going compressional wave. These transit times are used to construct a
“best-fitting” model. Here v; refers to the velocity in discrete layers, assumed
to be constant. We will ignore the discretization error in this calculation.

If the velocity model v(z) and the ray paths are known, then the travel time
can be computed by integrating the velocity along the ray path.

The goal is to somehow estimate v(z) (or some functional of v(z)), or to
estimate confidence intervals for v(z). Unless v is constant, the rays will
refract and therefore the domain of integration depends on the unknown
velocity. This makes the inverse problem mildly nonlinear. We will neglect
nonlinearity in the present example by assuming that the rays are straight
lines.

How well a particular v(z) model fits the data depends on how accurately the
data are known. Roughly speaking, if the data are known very precisely we
will have to work hard to come up with a model that fits them to a reasonable
degree. If the data are known only rather imprecisely, then we can fit them
more easily. For example, in the extreme case of only noise, the mean of the
noise is a fit to the data.
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As a simple synthetic example we constructed a piecewise constant v(z) with
40 layers and used 40 unknown layers to perform the reconstruction. We
computed 78 synthetic travel times and contaminated them with uncorre-
lated Gaussian noise. The level of the noise doesn’t matter for the present
purposes; the point is that given an unknown level of noise in the data,
different assumptions about this noise will lead to different kinds of recon-
structions. With the constant velocity layers, the system of forward problems
for all 78 rays reduces to

t=J-s (2.1)

where s is the 40-dimensional vector of reciprocal layer velocity (slowness to
seismologists) and J is a matrix whose ¢ — j entry is the distance the i-th ray
travels in the j-th layer. (See Bording et al. [BGL'87] for the details behind
this tomography calculation.) So, the data mapping ¢ is the inner product
of the matrix J and the slowness vector s.

Let ¢? be the i—th observed travel time, t¢(s) is the i-th travel time calculated
through a given slowness model s, and o; is the standard deviation of the i-th
datum. If the true slowness is s,, then the following model of the observed
travel times is assumed to hold:

t; = 15(s0) + €, (2.2)

where ¢; is a noise term with zero mean and variance o?. Our goal is to

estimate s,. A standard approach to solve this problem is to determine
slowness values s that make a misfit function such as

1 X (te(s) —to)?
2 1 7
s) = — _— ., 2.3
o=y 3 (1 23
smaller than some tolerance. Here N is the number of observations, The
symbol x? is often used to denote this sum because x*(s,) is just an average
of independent y?-distributed variables when (2.2) holds and the noise is
Gaussian and uncorrelated.

We have assumed that the number of layers is known, 40 in this example, but
this is usually not the case. Choosing too many layers may lead to an over-
fitting of the data. In other words we end up fitting noise induced structures.
Using an insufficient number of layers will not capture important features
in the data. There are tricks and methods to try to avoid over- and under-
fitting. In the present example we do not have to worry since we will be using
simulated data. To determine the slowness values through (2.3) we have used
a truncated SVD reconstruction, throwing away all the eigenvectors in the
generalized inverse approximation of s that are not required to fit the data at
the x? = 1 level. The resulting model is not unique, but it is representative
of models that do not over-fit the data (to the assumed noise level).

@



18 Example: A Vertical Seismic Profile

We will consider the problem of fitting the data under two different assump-
tions about the noise. Figure 2.2 shows the observed and predicted data
for models that fit the travel times on average to within 0.3 ms and 1.0 ms.
Remember, the actual pseudo-random noise in the data is fixed throughout,
all we are changing is our assumption about the noise, which is reflected in
the data misfit criterion.

We refer to these as the optimistic (low noise) and pessimistic (high noise)
scenarios. You can clearly see that the smaller the assumed noise level in the
data, the more the predicted data must follow the pattern of the observed
data. It takes a complicated model to predict complicated data! There-
fore, we should expect the best fitting model that produced the low noise
response to be more complicated than the model that produced the high
noise response. If the error bars are large, then a simple model will explain
the data.

Now let us look at the models that actually fit the data to these different noise
levels; these are shown in Figure 2.3. It is clear that if the data uncertainty
is only 0.3 ms, then the model predicts (or requires) a low velocity zone.
However, if the data errors are as much as 1 ms, then a very smooth response
is enough to fit the data, in which case a low velocity zone is not required.
In fact, for the high noise case essentially a linear v(z) increase will fit the
data, while for the low noise case a rather complicated model is required. (In
both cases, because of the singularity of J, the variances of the estimated
parameters become very large near the bottom of the borehole.)

Hopefully this example illustrates the importance of understanding the noise
distribution to properly interpret inversion estimates. In this particular case,
we didn’t simply pull these standard deviations out of hat. The low value
(0.3 ms) is what you happen to get if you assume that the only uncertainties
in the data are normally distributed fluctuations about the running mean
of the travel times. However, keep in mind that nature doesn’t really know
about travel times. Travel times are approximations to the true properties
(i.e., finite bandwidth) of waveforms. Further, the travel times themselves
are usually assigned by a human interpreter looking at the waveforms. Based
on these considerations, one might be led to conclude that a more reasonable
estimate of the uncertainties for real data would be closer to 1 ms than 0.3
ms. In any event, the interpretation of the presence of a low velocity zone
should be viewed with some scepticism unless the smaller uncertainty level
can be justified.
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Figure 2.2: Observed data (solid curve) and predicted data for two different
assumed levels of noise. In the optimistic case (dashed curve) we assume the
data are accurate to 0.3 ms. In the more pessimistic case (dotted curve), we
assume the data are accurate to only 1.0 ms. In both cases the predicted
travel times are computed for a model that just fits the data. In other
words we perturb the model until the RMS misfit between the observed
and predicted data is about N times 0.3 or 1.0, where N is the number of
observations. Here N = 78.
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Figure 2.3: The true model (solid curve) and the models obtained by a
truncated SVD expansion for the two levels of noise, optimistic (0.3 ms,
dashed curve) and pessimistic (1.0 ms, dotted curve). Both of these models
just fit the data in the sense that we eliminate as many singular vectors as
possible and still fit the data to within 1 standard deviation (normalized
x> = 1). An upper bound of 4 has also been imposed on the velocity. The
data fit is calculated for the constrained model.



Chapter 3

A Simple Inverse Problem that
Isn’t

Now we’re going to take a look at a real inverse problem: estimating the
density of the material in a body from information about the body’s weight
and volume. Although this sounds like a problem that is too simple to be
of any interest to real inverters, we are going to show you that it is prey
to exactly the same theoretical problems as an attempt to model the three-
dimensional elastic structure of the earth from seismic observations.

Here’s a piece of something (Figure 3.1): It’s green, moderately heavy, and
it appears to glow slightly (as indicated by the tastefully drawn rays in the
figure). The chunk is actually a piece of kryptonite, one of the few materials
for which physical properties are not available in handbooks. Our goal is
to estimate the chunk’s density (which is just the mass per unit volume).
Density is just a scalar, such as 7.34, and we’ll use p to denote various

« |/

/
;o

Figure 3.1: A chunk of kryptonite. Unfortunately, kryptonite’s properties do
not appear to be in the handbooks.

@
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T Vv 7 fluid level
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Figure 3.2: A pycnometer is a device that measures volumes via a calibrated
beaker partially filled with water.

K

estimates of its value. Let’s use K to denote the chunk (so we don’t have to
say chunk again and again).

3.1 A First Stab at p

In order to estimate the chunk’s density we need to learn its volume and its
mass.

3.1.1 Measuring Volume

We measure volume with an instrument called a pycnometer. Our pycnome-
ter consists of a calibrated beaker partially filled with water. If we put K in
the beaker, it sinks (which tells us right away that K is denser than water).
If the fluid level in the beaker is high enough to completely cover K, and if we
record the volume of fluid in the beaker with and without K in it, then the
difference in apparent fluid volume is equal to the volume of K. Figure 3.2
shows a picture of everyman’s pycnometer. V' denotes the change in volume
due to adding K to the beaker.

3.1.2 Measuring Mass

We seldom actually measure mass. What we usually measure is the force
exerted on an object by the local gravitational field, that is, we put it on a
scale and record the resultant force on the scale (Figure 3.3).

In this instance, we measure the force by measuring the compression of the
spring holding K up. We then convert that to mass by knowing (1) the local
value of the Earth’s gravitational field, and (2) the (presumed linear) relation
between spring extension and force.
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,,,,,,,,,,,, = g m = (kd)/g

Figure 3.3: A scale may or may not measure mass directly. In this case, it
actually measures the force of gravity on the mass. This is then used to infer
mass via Hooke’s law.

3.1.3 Computing p

Suppose that we have measured the mass and volume of K and we found:

Measured Volume and Weight
volume 100 cc
mass 520 gm

Since density (p), mass (m), and volume (v) are related by

_m 3.1
p=- (3.1)

520 gm
_ 20 _go8m 3.9
= 100 em® (3-2)

3.2 The Pernicious Effects of Errors

For many purposes, this story could end now. We have found an answer to
our original problem (measuring the density of K). We don’t know anything
(yet) about the shortcomings of our answer, but we haven’t had to do much
work to get this point. However, we, being scientists, are perforce driven to
consider this issue at a more fundamental level.

3.2.1 Errors in Mass Measurement

For simplicity, let’s stipulate that the volume measurement is essentially
error-free, and let’s focus on errors in the measurement of mass. To estimate
errors due to the scale, we can take an object that we know' and measure

1 An object with known properties is a standard. Roughly speaking, an object functions
as a standard if the uncertainty in knowledge of the object’s properties is at least ten times
smaller than the uncertainty in the current measurement. Clearly, a given object can be
a standard in some circumstances and the object of investigation in others.

@
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p(x)
probability of measuring x

when the correct value is 5.2

—_ probability of measuring 5.2

probability of measuring 5.4
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Figure 3.4: Pay careful attention to the content of this figure: It tells us the
distribution of measurement outcomes for a particular true value.

its mass a large number of times. We then plot the distribution (relative
frequency) of the measured masses when we had a fixed standard mass. The
results looks like Figure 3.4.

3.3 What is an Answer?

Let’s consider how we can use this information to refine the results of our
experiment. Since we have an observation (namely 5.2) we’d like to know
the probability that the true density has a particular value, say 5.4.

This is going to be a little tricky, and it’s going to lead us into some unusual
topics. We need to proceed with caution, and for that we need to sort out
some notation.

3.3.1 Conditional Probabilities

Let po be the value of density we compute after measuring the volume and
mass of K; we will refer to pp as the observed density. Let pr be the actual
value of K’s density; we will refer to pr as the true density.?

2We will later consider whether this definition must be made more precise, but for now

we will avoid the issue.
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Let Por(po, pr) denote the conditional probability that we would measure
po if the true density was pr. The quantity plotted above is Por(po,5.2),
the probability that we would observe po if the true density was 5.2.

A few observations

First, keep in mind that in general we don’t know what the true value of the
density is. But if we nonetheless made repeated measurements we would still
be mapping out Pp|r, only this time it would be Por(po, pr). And secondly,
you’ll notice in the figure above that the true value of the density does not
lie exactly at the peak of our distribution of observations. This must be the
result of some kind of systematic error in the experiment. Perhaps the scale
is biased; perhaps we’ve got a bad A /D converter; perhaps there was a steady
breeze blowing in the window of the lab that day.

A distinction is usually made between modeling errors and random errors.
A good example of a modeling error, would be assuming that K were pure
kryptonite, when in fact it is an alloy of kryptonite and titanium. So in this
case our theory is slightly wrong. Whereas most people think of random
noise as being the small scale fluctuations which occur when a measurement
is repeated. Unfortunately this distinction doesn’t stand serious scrutiny. No
experiment is truly repeatable. So when we try to repeat it, we’re actually
introducing small changes into the assumptions; as we repeatedly pick up
K and put it back down on the scale, perhaps little bits fleck off, or some
perspiration from our hands sticks to the sample, or we disturb the balance
of the scale slightly by touching it. An even better example would be the
positions of the gravimeters in the buried treasure example. We need to
know these to do the modeling. But every time we pick up the gravimeter
and put it back to repeat the observation, we misposition it slightly. Do we
regard these mispositionings as noise or do we regard them as actual model
parameters that we wish to infer? Do we regard the wind blowing the trees
during our seismic experiment as noise, or could we actually infer the speed
of the wind from the seismic data?

As far as we can tell, the distinction between random errors and modeling
errors is arbitrary and up to us to decide on a case by case. What it boils
down to are: what features are we really interested in?

3.3.2 What We’re Really (Really) After

What we want is Prio(pr, po), the probability that pr has a particular value
given that we have the observed value pp. Because Pro and Ppr appear to

@
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Experiment 1 Experiment 2
given a chunk: 1. get achunk.
1. estimate its density. 2. estimate its density.
2.goto 1. 3.goto 1.
one chunk many chunks

a»

Figure 3.5: Two apparently different experiments.

be relations between the same quantities, and because they look symmetric,
it’s tempting to make the connection

Prio(pr, po) = Por(po, pr) ?

but unfortunately it’s not true.

What is the correct expression for Prp? More important, how can we
think our way through issues like this?

We’ll start with the last question. One fruitful way to think about these
issues is in terms of a simple, repeated experiment. Consider the quantity
we already have: Pp, which we plotted earlier. It’s easy to imagine the
process of repeatedly weighing a mass and recording the results. If we did
this, we could directly construct tables of Ppr.

3.3.3 A (Short) Tale of Two Experiments

Now consider repeatedly estimating density. There are two ways we might
think of this. In one experiment we repeatedly estimate the density of a par-
ticular, given chunk of kryptonite. In the second experiment we repeatedly
draw a chunk of kryptonite from some source and estimate its density.

@
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These experiments appear to be quite different. The first experiment sounds
just like the measurements we (or someone) made to estimate errors in the
scale, except in this case we don’t know the object’s mass to begin with. The
second experiment has an entirely new aspect: selecting a chunk from a pool
or source of chunks.?

Now we’re going to do two things:

e We're going to persuade you (we hope) that both experiments are in
fact the same, and they both involve acquiring (in principle) multiple
chunks from some source.

e We're going to show you how to compute Prp when the nature of the
source of chunks is known and its character understood. After that
we'll tackle (and never fully resolve) the thorny but very interesting
issue of dealing with sources that are not well-understood.

3.3.4 The Experiments Are Identical
Repetition Doesn’t Affect Logical Structure

In the first experiment we accepted a particular K and measured its density
repeatedly by conducting repeated weighings. The number of times we weigh
a given chunk affects the precision of the measurement but it does not affect
the logical structure of the experiment. If we weigh each chunk (whether we
use one chunk or many) one hundred times and average the results, the mass
estimate for each chunk will be more precise, because we have reduced uncor-
related errors through averaging; we could achieve the same effect by using
a correspondingly better scale. This issue is experimentally significant but it
is irrelevant to understanding the probabilistic structure of the experiment.
For simplicity, then, we will assume that in both experiments, a particular
chunk is measured only once.

Answer is Always a Distribution

In the (now slightly modified) first experiment, we are given a particular
chunk, K, and we make a single estimate of its mass, namely pp. Since the
scale is noisy, we have to express our knowledge of pr, the true density, as
a distribution showing the probability that the true density has some value

3The Edmund Scientific catalog might be a good bet, although we didn’t find kryptonite

in it.
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p(x)
probability of atrue density of x
when the observed value is 5.2

—__— probability of true density of 5.2

probability of true density of 5.4
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Figure 3.6: Pr|p, the probability that the true density is x given some ob-
served value.

given that the observed density has some other value. Our first guess is that
it might have the gaussianish form that we had for Pojr above. So Figure 3.6
shows the suggested form for Pr o constructed by cloning the earlier figure.

A Priori Pops Up

This looks pretty good until we consider whether or not we know anything
about the density of kryptonite outside of the measurements we have made.

Suppose pr is Known

Suppose that we know that the density of kryptonite is exactly
pr = 1.7m
In that case, we must have

Prio(pr, po) = 0(pr — 1.77)

@
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(where 6(z) is the Dirac delta-function) no matter what the observed value
Po 18.

We are not asserting that the observed densities are all equal to 1.77: the
observations are still subject to measurement noise. We do claim that the
observations must always be consistent with the required value of pr (or
that some element of this theory is wrong). This shows clearly that Prjo #
Ppr since one is a delta function, while the other must show the effects of
experimental errors.

Suppose pr is Constrained

Suppose that we don’t know the true density of K exactly, but we’re sure it
lies within some range of values:

[ Cx if5.6> pr> 5.l
Ppr) = { 0  otherwise

where Ck is a constant and P refers to the probability distribution of possible
values of the density.? In that case, we’d expect Prio must be zero for
impossible values of pr but should have the same shape everywhere else
since the density distribution of chunks taken from the pool is flat for those
values.> So we’d expect something like Figure 3.7.

What Are We Supposed to Learn from All This?

We hope it’s clear from these examples that the final value of Pr o depends
upon both the errors in the measurement process and the distribution of
possible true values determined by the source from which we acquired our
sample(s). This is clearly the case for the second type of experiment (in which
we draw multiple samples from a pool), but we have just shown above that
it is also true when we have but a single sample and a single measurement.®

What we’re supposed to learn from all this, then, is

4There will be much more about probabilities in the next chapter, for now a loose
understanding is sufficient.

5The distribution does have to be renormalized, so that the probability of getting some
value is one, but we can ignore this for now.

60ne of the reasons we afford so much attention to the simple one-sample experiment
is that in geophysics we typically have only one sample, namely Earth.

@
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P(X)
Probability of atrue density of x
when the observed valueis 5.2

probability of atrue density of 5.2

-

probability of atrue density of 5.4

X - /
CK
X
\ 5152 54 5.6
probability of atrue density <5.1iszero
0
5152 54 5.6

Figure 3.7: A priori we know that the density of kryptonite cannot be less
than 5.1 or greater than 5.6. If we’re sure of this than we can reject any
observed density outside of this region.

Conclusion 1: The correct a posteriori conditional distribution of den-
sity, Pr o, depends in part upon the a priori distribution of ¢{rue densities.

Conclusion 2: This connection holds even if the experiment consists of
a single measurement on a single sample.




Chapter 4

A Little Linear Algebra

4.1 Linear Vector Spaces

The only kind of mathematical spaces we will deal with in this course are
linear vector spaces.! You are already well familiar with concrete examples of
such spaces, at least in the geometrical setting of vectors in three-dimensional
space. We can add any two, say, force vectors and get another force vector.
We can scale any such vector by a numerical quantity and still have a le-
gitimate vector. However, in this course we will use vectors to encapsulate
discrete information about models and data. If we record one seismogram
one second in length at a sample rate of 1000 samples per second, then we
can put these 1000 bytes of information in a 1000-tuple

(51,82,83, . ',81000) (4-1)

where s; is the i-th sample, and treat it just as we would a 3-component
physical vector. That is, we can add any two such vectors together, scale
them, and so on. When we “stack” seismic traces, we're just adding these
n-dimensional vectors component by component

s+t=(s1+t1,82+t2,83+t3, -, S1000 + 1000)- (4.2)

Now, the physical vectors have a life independent of the particular 3-tuple we
use to represent them. We will get a different 3-tuple depending on whether
we use cartesian or spherical coordinates, for example; but the force vector
itself is independent of these considerations. Whereas our use of vector spaces

!The parts of this chapter dealing with linear algebra follow the outstanding book by
Strang [Str88] closely. If this summary is too condensed, you would be well advised to
spend some time working your way through Strang’s book.
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is purely abstract. There is no physical seismogram vector; all we have is the
n-tuple.

Further, the mathematical definition of a vector space is sufficiently general to
incorporate objects that you might not consider as vectors at first glance—such
as functions and matrices. The definition of such a space actually requires
two sets of objects: a set of vectors V and a one of scalars F. For our
purposes the scalars will always be either the real numbers R or the complex
numbers C.

Definition 1 Linear Vector Space A linear vector space over a field F' of
scalars is a set of elements V' together with a function called addition from
V x V into V2 and a function called scalar multiplication from F x V into
V' satisfying the following conditions for all x,y,z € V and all o, 3 € F':

VIi: (z+y)+z=x+ (y+2)

V2: e +y=y+z

V3: There is an element 0 in 'V such that t +0 =z for allz € V.

V4: For each x € V there is an element —x € V' such that z + (—z) = 0.

Vs a(r+y) =ar+ay

V6: (a+ p)x = ax + Pz

V7: a(fz) = (af)z

V8: 1-z=x
The simplest example of a vector space is R", whose vectors are n-tuples

of real numbers. Addition and scalar multiplication are defined component-
wise:

(wlax%"'axn) + (y1’y23"'ayn) = (Il +y1,$2+y2,"‘,$n+yn) (43)

and
Ty, Loy, Ty) = (T, g, - -+, Q). (4.4)

In the case of n = 1 the vector space V and the field F' are the same. So
trivially, F' is a vector space over F.

2The cartesian product A x B of two sets A and B is the set of all ordered pairs (a, b)
where a € A and b € B.
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A few observations: first, by adding —z to both sides of x + y = x, you can
show that x + y = x if and only if y = 0. This implies the uniqueness of the
zero element and also that a - 0 = 0 for all scalars a.

Functions themselves can be vectors. Consider the space of functions map-

ping some nonempty set onto the scalars, with addition and multiplication
defined by:

[f +gl(t) = f(t) +g(t) (4.5)
and
[af](t) = af (D). (4.6)

We use the square brackets to separate the function from its arguments. In
this case, the zero element is the function whose value is zero everywhere.
And the minus element is inherited from the scalars: [—f](t) = —f(¢).

4.1.1 Matrices

The set of all n x m matrices with scalar entries is a linear vector space
with addition and scalar multiplication defined component-wise. We denote
this space by R™*™. Two matrices have the same dimensions if they have
the same number of rows and columns. We use upper case roman letters
to denote matrices, lower case roman® to denote ordinary vectors and greek
letters to denote scalars. For example, let

2
A=|3 (4.7)
1

S 0o Ot

Then the components of A are denoted by A;;. The transpose of a matrix,
denoted by AT, is achieved by exchanging the columns and rows. In this

example
AT:lggé]. (4.8)
Thus Ay =3 = AL,
You can prove for yourself that
(AB)" = BT AT, (4.9)

A matrix which equals its transpose (AT = A) is said to be symmetric. If
AT = — A the matrix is said to be skew-symmetric. We can split any square

3For emphasis, and to avoid any possible confusion, we will henceforth also use bold
type for ordinary vectors.
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matrix A into a sum of a symmetric and a skew-symmetric part via
1 1 T
A:§(A+A )+§(A—A ). (4.10)
The Hermitian transpose of a matrix is the complex conjugate of its trans-

pose. Thus if
4—3 8 12+

A= 12 8 4 (4.11)
then
) 440 —12
AT = AT = 8 -8 . (4.12)
1240 —4+4i

Sometimes it is useful to have a special notation for the columns of a matrix.
So if

2 5
A=13 8 (4.13)
10
then we write
A= [ a; ay ] (414)
where
2
1

Addition of two matrices A and B only makes sense if they have the same
number of rows and columns. In which case we can add them component-wise

(A+ B)y = [Ay; + Bij] - (4.16)
For example if
1 2 3
ae[ 3 8] an
and )
0 6 2
B__1 1 1] (4.18)
Then _
1 8 5
A+B—__2 1 O]' (4.19)

Scalar multiplication, once again, is done component-wise. If

A:l_13 2 _31] (4.20)

@
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and a = 4 then
4 8 12
aA = l 12 _8 _4 ] . (4.21)
So both matrices and vectors can be thought of as vectors in the abstract
sense. Matrices can also be thought of as operators acting on vectors in R”
via the matrix-vector inner (or “dot”) product. If A € R"*™ and x € R™,

then A-x =1y € R" is defined by
Yi = Z Az (4.22)
j=1

This is an algebraic definition of the inner product. We can also think of
it geometrically. Namely, the inner product is a linear combination of the
columns of the matrix. For example,

a1l G2 1 a1 Gi12
A-x= 91 G922 . T =T 21 + Zo a929 . (423)
2

a3z; as2 a3 azz

A special case of this occurs when A is just an ordinary vector. We can think
of this as A € R™™ with n = 1. Then y € R! is just a scalar. A vector z in
R™ looks like

(Zl, 22,23, ", Zm) (424)

so the inner product of two vectors z and x is just

X
T2

(21, 22,23, ", 2n] - | T3 | = [2121 + 200 + 2373 + - - - + 2pTn] - (4.25)

Ty

By default, a vector x is regarded as a column vector. So this vector-vector
inner product is also written as zx or as (z,x). Similarly if A € R"*™ and
B € R™*P, then the matrix-matrix AB product is defined to be a matrix in
R™*? with components

(AB);; = > aiby;. (4.26)
k=1
For example,
1 2 01 4 7
AB_[?) 4][2 3]_l8 15]' (4.27)

@
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On the other hand, note well that

pa=[0][12]2 &]umn o

This definition of matrix-matrix product even extends to the case in which
both matrices are vectors. If x € R™ and y € R", then xy (called the
“outer” product and usually written as xy’) is

So if
|t (4.30)
X = 1 )
and
1
y=13 (4.31)
0
then
r | -1 =30
Xy = l . 3 0 ] . (4.32)

4.1.2 Matrices With Special Structure

The identity element in the space of square n X n matrices is a matrix with
ones on the main diagonal and zeros everywhere else

1 0 0 © 1
01 0 0 ...

I,=|0 0 1 0 ... |, (4.33)
(0 ... 0 0 1

Even if the matrix is not square, there is still a main diagonal of elements
given by A; where ¢ runs from 1 to the smaller of the number of rows and
columns. We can take any vector in R" and make a diagonal matrix out of it
just by putting it on the main diagonal and filling in the rest of the elements
of the matrix with zeros. There is a special notation for this:

2y 0 0 0
diag(xl,xg,---,xn) =0 0 =z 0 ...|, (4.34)
I 0O ... 0 0 =z, |

@
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A matrix Q € R™ " is said to be orthogonal if Q7' Q = I,,. In this case, each
column of () is an orthornormal vector: q;-q; = 1. So why are these matrices
called orthogonal? No good reason. As an example

Q:%“ _11] (4.35)

Now convince yourself that Q7Q = I, implies that QQT = I, as well. In
which case the rows of () must be orthonormal vectors too.

Another interpretation of the matrix-vector inner product is as a mapping
from one vector space to another. Suppose A € R"*™, then A maps vectors
in R™ into vectors in R". An orthogonal matrix has an especially nice
geometrical interpretation. To see this first notice that for any matrix A, the
inner product (A - x) -y, which we write as (Ax,y), is equal to (x, ATy), as
you can readily verify. Similarly

(ATx,y) = (x, Ay). (4.36)
As a result, for an orthogonal matrix @

(@x,Qx) = (Q"@Qx,x) = (x,x). (4.37)

Now, as you already know, and we will discuss shortly, the inner product of a
vector with itself is related to the length, or norm, of that vector. Therefore
an orthogonal matrix maps a vector into another vector of the same norm.
In other words it does a rotation.

4.1.3 Matrix and Vector Norms

We need some way of comparing the relative “size” of vectors and matrices.
For scalars, the obvious answer is the absolute value. The absolute value of
a scalar has the property that it is never negative and it is zero if and only
if the scalar itself is zero. For vectors and matrices both we can define a
generalization of this concept of length called a norm. A norm is a function
from the space of vectors onto the scalars, denoted by || - || satisfying the
following properties for any two vectors v and v and any scalar a:
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Definition 2 Norms

N1: ||v|| > 0 for anyv #0 and ||v]| =0 v =0
N2: vl = [afllv]]
N3: v+ ull < [[ol] + [|u]

Property N3 is called the triangle inequality.

The most useful class of norms for vectors in R" is the £, norm defined for
p>1*by

n 1/p
1x[le, = (Z\xilp) : (4.39)
i=1
For p = 2 this is just the ordinary euclidean norm: |[x|ls = vVxTx. A finite
limit of the ¢, norm exists as p — oo called the /o, norm:

lele., = max Joi (440
Any norm on vectors in R" induces a norm on matrices via

| Ax]l

Il

41l = max (441)

A matrix norm that is not induced by any vector norm is the Frobenius norm
defined for all A € R™*™ as

o 1/2
2
”A”F = (ZZ Aij) . (4.42)

i=1j=1
It can be shown that the Frobenius norm of a matrix A is equal to the sum
of the diagonal elements (this is called the trace of the matrix) of A A.

Some examples: ||A|; = max; ||a;|[; where a; is the j-th column of A. Simi-
larly ||Al| is the maximum 1-norm of the rows of A. For the euclidean norm
we have (||Al])> = maximum eigenvalue of A”A. The first two of these ex-
amples are reasonably obvious. The third is far from so, but is the reason the
{5 norm of a matrix is called the spectral norm. We will prove this latter result
shortly after we’ve reviewed the properties of eigenvalues and eigenvectors.

“What happens if p < 1? For example, is

(Z B 2) (4.38)
=1

@

a norm?
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Breakdown of the /, norm

Since we have alluded in the previous footnote to some difficulty with the £,
norm for p < 1 it might be worth a brief digression on this point in order
to emphasize that this difficulty is not merely of academic interest. Rather,
it has important consequences for the algorithms that we will develop in the
chapter on “robust estimation” methods. For the rectangular (and invariably
singular) linear systems we will need to solve in inverse calculations, it is
useful to pose the problem as one of optimization; to wit,

min || Az — y]|. (4.43)

It can be shown that for the ¢, family of norms, if this optimization problem
has a solution, then it is unique: provided the matrix has full column rank
and p > 1. For p = 1 the norm loses, in the technical jargon, strict convexity.
A proof of this result can be found in [SG88]. It is easy to illustrate. Suppose
we consider the one parameter linear system:

1e-[3]

For simplicity, let us assume that A > 0 and let us solve the problem on the
open interval z € (0,1). The ¢, error function is just

E,(z) = [|z — 1|P + M?|z|]'/7. (4.45)
Restricting z € (0,1) means that we don’t have to deal with the non-
differentiability of the absolute value function. And the overall exponent
doesn’t affect the critical points (points where the derivative vanishes) of E,.
So we find that 0, Ep(z) = 0 if and only if

(1 - x)p_l — (4.46)

from which we deduce that the £, norm solution of the optimization problem

1S
1

. = Tl (4.47)

Ty

But remember, ) is just a parameter. The theorem just alluded to guarantees
that this problem has a unique solution for any A provided p > 1. A plot of
these solutions as a function of A is given in Figure (4.1).

This family of solutions is obviously converging to a step function as p — 1.
And since this function is not single-valued at A\ = 1, you can see why the
uniqueness theorem is only valid for p > 1

@



40 A Little Linear Algebra

p-norm error

p=1.01
0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 4.1: Family of ¢, norm solutions to the optimization problem for var-
ious values of the parameter A. In accordance with the uniqueness theorem,
we can see that the solutions are indeed unique for all values of p > 1, but
that for p = 1 this breaks down at the point A = 1.

Interpretation of the /, norms

When we are faced with optimization problems of the form
min || Ax — Ylle, (4.48)

the question naturally arises: which p is best? There are two aspects of this
question. The first is purely numerical. It turns out that some of the /,
norms have more stable numerical properties than others.

In particular, as we will see, p values near 1 are more stable than p values
near 2. On the other hand, there is an important statistical aspect of this
question. When we are doing inverse calculations, the vector y is associated
with our data. If our data have, say, a Gaussian distribution, then /5 is
optimal in a certain sense to be described shortly. On the other hand, if
our data have the double-exponential distribution, then ¢; is optimal. This
optimality can be quantified in terms of the entropy or information content
of the distribution. For the Gaussian distribution we are used to thinking of
this in terms of the variance or standard deviation. More generally, we can
define the £, norm dispersion of a given probability density p(z) as

(op)P = /_o:o |z — zo|Pp(x) dx (4.49)

where g is the center of the distribution. (The definition of the center need
not concern us here. The point is simply that the dispersion is a measure of
how spread out a probability distribution is.)

One can show (cf. [Tar87], Chapter 1) that for a fixed ¢, norm dispersion,
the probability density with the minimum information content is given by

@
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p=infinity

Figure 4.2: Shape of the generalized Gaussian distribution for several values
of p.
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the generalized gaussian

N Sy o N
p”(”’)_%pru ) p<p AL ) (4.50)

where T' is the Gamma function [MF53]. These distributions are shown
in Figure 4.1.3 for four different values of p, 1,2,10, and oco. The reason
information content is so important is that being naturally conservative, we
want to avoid jumping to any unduly risky conclusions about our data. One
way to quantify simplicity is in terms of information content, or entropy:
given two (or more) models which fit the data to the same degree, we may
want to choose the one with the least information content in order to avoid
over-interpreting the data. This is an important caveat for all of inverse
theory.® Later in the course we will come back to what it means to be
“conservative” and see that the matter is more complicated than it might
first appear.

4.1.4 Linear Dependence and Independence

Suppose we have n vectors
{X17x27' "7Xn} (451)

of the same dimension. The question is, under what circumstances can the
linear combination of these vectors be zero:

1X1 + Xy + - - - apX, = 0. (4.52)

If this is true with at least one of the coefficients «; nonzero, then we could
isolate a particular vector on the right hand side, expressing it as a linear
combination of the other vectors. In this case the original set of n vectors
are said to be linearly dependent. On the other hand, if the only way for this
sum of vectors to be zero is for all the coefficients themselves to be zero, then
we say that the vectors are linearly independent.

Now, this linear combination of vectors can also be written as a matrix-vector
inner product. With a = (a1, s, -+, ay), and X = (x1, X, -+, X,) We have
the condition for linear dependence being

Xa=0 (4.53)

5This is a caveat for all of life too. It is dignified with the title Occam’s razor after
William of Occam, an English philosopher of the early 14th century. What Occam actually
wrote was: “Entia non sunt multiplicanda praeter necessitatem” (things should not be
presumed to exist, or multiplied, beyond necessity).

@
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for some nonzero vector a, and the condition for linear independence being

Xa=0=a=0. (4.54)

As a result, if we are faced with a linear system of equations to solve
Ax=Db (4.55)

we can think in two different ways. On the one hand, we can investigate the
equation in terms of the existence of a vector x satisfying the equation. On
the other hand, we can think in terms of the compatibility of the right hand
side with the columns of the matrix.

Linear independence is also central to the notion of how big a vector space is—
its dimension. It’s intuitively clear that no two linearly independent vectors
are adequate to represent an arbitrary vector in R3. For example, (1,0,0)
and (0, 1,0) are linearly independent, but there are no scalar coefficients that
will let us write (1,1,1) as a linear combination of the first two. Conversely,
since any vector in R?® can be written as a combination of the three vectors
(1,0,0), (0,1,0), and (0,0, 1), it is impossible to have more than three linearly
independent vectors in R3. So the dimension of a space is the number of
linearly independent vectors required to represent an arbitrary element.

4.1.5 The Four Fundamental Spaces

Now if we take two basis vectors R? (1,0) and (0, 1),% and consider all possible
linear combinations of them—this is called the span of the two vectors—we will
incorporate all the elements in R2. On the other hand, if we consider these
two vectors as being in R?, so that we write them as (1,0,0) and (0,1, 0),
then their span clearly doesn’t fill up all of R3. It does, however, fill up a
subspace of R3, the z — y plane. The technical definition of a subspace is
that it is a subset closed under addition and scalar multiplication:

Definition 3 Subspaces A subspace of a vector space is a nonempty subset
S that satisfies

S1: The sum of any two elements from S is in S, and

S2: The scalar multiple of any element from S isin S.

6 Any other pair of linearly independent vectors, such as (2,0) and (1,15) would also

work.
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If we take a general matrix A € R™ ™, then the span of the columns must
be a subspace of R®. Whether this subspace amounts to the whole of R"
obviously depends on whether the columns are linearly independent or not.
This subspace is called the column space of the matrix and is usually denoted
by R(A), for “range”. The dimension of the column space is called the rank
of the matrix.

Another fundamental subspace associated with any matrix A is composed by
the solutions of the homogeneous equation Ax = 0. Why is this a subspace?
Well, take any two such solutions, say x and y and we have

Alx+y)=Ax+ Ay = 0. (4.56)

Similarly,
A(ax) = aAx. (4.57)

This subspace is called the nullspace or kernel and is extremely important
from the point of view of inverse theory. As we shall see, in an inverse
calculation the right hand side of a matrix equations is usually associated
with perturbations to the data. Vectors in the nullspace have no effect on
the data and are therefore unresolved in an experiment. Figuring out what
features of a model are unresolved is a major goal of inversion.

Spaces associated with a linear system Ax =y

The span of the columns is a subset of R™ and the span of the rows is a
subset of R™. In other words the rows of A have m components while the
columns of A have n components. Now the column space and the nullspace
are generated by A. What about the column space and the null space of
AT? These are, respectively, the row space and the left nullspace of A. The
nullspace and row space are subspaces of R™, while the column space and
the left nullspace are subspaces of R".

Here is probably the most important result in linear algebra: For any matrix
whatsoever, the number of linearly independent rows equals the number of
linearly independent columns. We summarize this by saying that row rank
= column rank. For a generic n X m matrix, this is not an obvious result.
If you haven’t encountered this before, it would be a good idea to review a
good linear algebra book, such as [Str88]. We can summarize these spaces
as follows:

Theorem 1 Fundamental Theorem of Linear Algebra Let A € R™"*™.

Then
O
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1: Dimension of column space equals r, the rank.
2: Dimension of nullspace equals m — r.
3: Dimension of row space equals 7.

4: Dimension of left nullspace equals n —r.

A Geometrical Picture

Any vector in the null space of a matrix, must be orthogonal to all the rows
(since each component of the matrix dotted into the vector is zero). Therefore
all the elements in the null space are orthogonal to all the elements in the
row space. In mathematical terminology, the null space and the row space
are orthogonal complements of one another. Or, to say the same thing, they
are both orthogonal subspaces of R™. Similarly, vectors in the left null space
of a matrix are orthogonal to all the columns of this matrix. This means that
the left null space of a matrix is the orthogonal complement of the column
space; they are orthogonal subspaces of R"™.

4.1.6 Matrix Inverses

A left inverse of a matrix A € R™*™ is defined to be a matrix B such that
BA=1. (4.58)
A right inverse C therefore must satisfy
AC = 1. (4.59)

If there exists a left and a right inverse of A then they must be equal since
matrix multiplication is associative:

AC =1 = B(AC) =B = (BA)C =B = C = B. (4.60)

Now if we have more equations than unknowns then the columns cannot
possibly span all of R™. Certainly the rank » must be less than or equal to n,
but it can only equal n if we have at least as many unknowns as equations.
The basic existence result is then:

Theorem 2 Existence of solutions to Ax =y The system Ax =y has
at least one solution x for everyy (there might be infinitely many solutions)
if and only if the columns span R™ (r = n), in which case there exists an
m X n right inverse C such that AC = I,,. This is only possible if n < m.

@
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Don’t be mislead by the picture above into neglecting the important special
case when m = n. The point is that the basic issues of existence and, next,
uniqueness, depend on whether there are more or fewer rows than equations.
The statement of uniqueness is:

Theorem 3 Uniqueness of solutions to Ax =y There is at most one
solution to Ax =y (there might be none) if and only if the columns of A
are linearly independent (r = m), in which case there ezists an m x n left
inverse B such that BA = I,,,. This is only possible if n > m.

Clearly then, in order to have both existence and uniqueness, we must have
that » = m = n. This precludes having existence and uniqueness for rectan-
gular matrices. For square matrices m = n, so existence implies unique-
ness and uniqueness implies existence.

Using the left and right inverses we can find solutions to Ax = y: if they exist.
For example, given a right inverse A, then since AC' = I, we have ACy =y.
But since Ax = y it follows that x = C'y. But C' is not necessarily unique.
On the other hand, if there exists a left inverse BA = I, then BAx = By,
which implies that x = By.

Some examples. Consider first the case of more equations than unknowns.

Let
-1

0
A=| 0 3 (4.61)
0 0

Since the columns are linearly independent and there are more rows than
columns, there can be at most one solution. You can readily verify that any

matrix of the form
-1 0 v
T o

is a left inverse. The particular left inverse given by the formula (AT A) AT
(cf. the exercise at the end of this chapter) is the one for which v and ¢ are
zero. But there are infinitely many other left inverses. As for solutions of
Ax =y, if we take the inner product of A with the vector (z1,72)" we get

—I hn
0 Y3
So, clearly, we must have 1 = —y; and z3 = 1/3y,. But, there will not be

any solution unless y3 = 0.

@
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Next, let’s consider the case of more columns (unknowns) than rows (equa-

tions). Let
-1 00
a=[7 0] s
Here you can readily verify that any matrix of the form
-1 0
0 1/3 (4.65)
v

is a right inverse. The particular right inverse (shown in the exercise at the
end of this chapter) AT(AAT)™! corresponds to v = ¢ = 0.

Now if we look at solutions of the linear system Ax = y with x € R? and
y € R? we find that 71 = —y;, zo» = 1/3y,, and that z3 is completely
undetermined. So there is an infinite set of solutions corresponding to the
different values of x3.

4.1.7 Eigenvalues and Eigenvectors

Usually when a matrix operates on a vector, it changes the direction of the
vector. But for a special class of vectors, eigenvectors, the action of the
matrix is to simply scale the vector:

Ax = Ix. (4.66)

If this is true, then x is an eigenvector of the matrix A associated with the
eigenvalue A\. Now, Ax equals A\/x so we can rearrange this equation and
write

(A= M)x =0, (4.67)

Clearly in order that x be an eigenvector we must choose A so that (A — AI)
has a nullspace and we must choose x so that it lies in that nullspace. That
means we must choose A so that Det(A — AI) = 0. This determinant is a
polynomial in )\, called the characteristic polynomial. For example if

A= li g] (4.68)

then the characteristic polynomial is
A2 — 10\ + 13 (4.69)

whose roots are
A=5+2V3, and A =5 — 2V/3. (4.70)

@
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Now all we have to do is solve the two homogeneous systems:

le 2\3/?_)] li; ] =0 (4.71)

and

l _24\/3 —23\/51 Hl ] =0 (4.72)

from which we arrive at the two eigenvectors

(7))

But note well, that these eigenvectors are not unique. Because they solve a
homogeneous system, we can multiply them by any scalar we like and not
change the fact that they are eigenvectors.

This exercise was straightforward. But imagine what would have happened if
we had needed to compute the eigenvectors/eigenvalues of a 10 x 10 matrix.
Can you imagine having to compute the roots of a 10-th order polynomial? In
fact, once you get past order 4, there is no algebraic formula for the roots of
a polynomial. The eigenvalue problem is much harder than solving Ax =y.

The following theorem gives us the essential computational tool for using
eigenvectors.

Theorem 4 Matrix diagonalization Let A be an n x n matriz with n
linearly independent eigenvectors. Let S be a matriz whose columns are these
eigenvectors. Then S™'AS is a diagonal matriz A whose elements are the
eigenvalues of A.

The proof is easy. The elements in the first column of the product matrix
AS are precisely the elements of the vector which is the inner product of A
with the first column of S. The first column of S, say si, is, by definition,
an eigenvector of A. Therefore the first column of AS is A;s;. Since this is
true for all the columns, it follows that AS is a matrix whose columns are
\;S;. But now we’re in business since

[A1S1 A2Sg - - ApSp] = [81 89 -+ -sp,]diag(Ay, Ao, - -+, An) = SA. (4.74)

Therefore AS = SA which means that S~*AS = A. S must be invertible
since we’'ve assumed that all it’s columns are linearly independent.

@
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e Any matrix in R"*" with n distinct eigenvalues can be diagonalized.

e Because the eigenvectors themselves are not unique, the diagonalizing
matrix S is not unique.

e Not all square matrices possess n linearly independent eigenvectors.
For example, what are the eigenvectors of

[ 8 é ]? (4.75)

e A matrix can be invertible without being diagonalizable. For example,

l g ; ] . (4.76)

Its two eigenvalues are both equal to 3 and its eigenvectors cannot be
linearly independent. However the inverse of this matrix is straightfor-

ward
l 163 _11/{))9 ] . (4.77)

We can summarize these ideas with a theorem whose proof can be found in
linear algebra books.

Theorem 5 Linear independence of eigenvectors If n eigenvectors of
an n X n matriz correspond to n different eigenvalues, then the eigenvectors
are linearly independent.

An important class of matrices for inverse theory are the real symmetric
matrices. The reason is that since we have to deal with rectangular matrices,
we often end up treating the matrices A” A and AAT instead. And these two
matrices are manifestly symmetric. In the case of real symmetric matrices,
the eigenvector/eigenvalue decomposition is especially nice, since in this case
the diagonalizing matrix S can be chosen to be an orthogonal matrix Q).

Theorem 6 Orthogonal decomposition of a real symmetric matrix
A real symmetric matriz A can be factored into

A=QAQT (4.78)

with orthonormal eigenvectors in (Q and real eigenvalues in A.

@
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4.1.8 Orthogonal decomposition of rectangular matri-
ces

For dimensional reasons there is clearly no hope of the kind of eigenvector
decomposition discussed above being applied to rectangular matrices. How-
ever, there is an amazingly useful generalization that pertains if we allow
a different orthogonal matrix on each side of A. It is called the Singular
Value Decomposition and works for any matrix whatsoever. Essentially
the singular value decomposition generates orthogonal bases of R™ and R"
simultaneously.

Theorem 7 Singular value decomposition Any matriz A € R™*™ can
be factored as

A=Q5Q) (4.79)

where the columns of Q1 € R™™ are eigenvectors of AAT and the columns
of Qs € R™™ gre the eigenvectors of ATA. ¥ € R™™ is a rectangular
matriz with the singular values on its main diagonal and zero elsewhere. The
singular values are the square roots of the eigenvalues of AT A, which are
the same as the nonzero eigenvalues of AAT. Further, there are exactly r
nonzero singular values, where r is the rank of A.

The columns of @)1 and ()5 span the four fundamental subspaces. The column
space of A is spanned by the first r columns of ;. The row space is spanned
by the first 7 columns of Q5. The left nullspace of A is spanned by the last
n — r columns of ()1. And the nullspace of A is spanned by the last m — r
columns of Q5.

A direct approach to the SVD, attributed to the physicist Lanczos, is to
make a symmetric matrix out of the rectangular matrix A as follows: Let

S:U)T ’g] (4.80)

Since A is in R"*™, S must be in R+m™)*x(+m) 7 And since S is symmetric
it has orthogonal eigenvectors w; with real eigenvalues );

"For the rest of this book we will interpret the matrix A as mapping from the space of
model parameters into the space of data—the forward problem. So there are m parameters
and n data. But, obviously this is unnecessary for the interpretation of the results. Model
space is simply R™ and data space is R".
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If we split up the eigenvector w;, which is in R"*™ into an n-dimensional
data part and an m-dimensional model part

w; = [ v, ] (4.82)
then the eigenvalue problem for S reduces to two coupled eigenvalue prob-
lems, one for A and one for AT

ATui = /\ivi (483)

We can multiply the first of these equations by A and the second by AT to
get
ATAVZ' = )\,L'QVZ' (485)

AAT'LLL' = )\12111'. (486)

So we see, once again, that the model eigenvectors u; are eigenvectors of AA”
and the data eigenvectors v; are eigenvectors of AT A. Also note that if we
change sign of the eigenvalue we see that (—u;, v;) is an eigenvector too. So
if there are r pairs of nonzero eigenvalues +\; then there are r eigenvectors
of the form (u;,v;) for the positive \; and r of the form (—u;,v;) for the
negative ;.

Keep in mind that the matrices U and V whose columns are the model and
data eigenvectors are square (respectively n X n and m x m) and orthogonal.
Therefore we have UTU = UUT = I, and VIV = VVT = I,,. But it is
important to distinguish between the eigenvectors associated with zero and
nonzero eigenvalues. Let U, and V, be the matrices whose columns are the r
model and data eigenvectors associated with the r nonzero eigenvalues and
Uy and V; be the matrices whose columns are the eigenvectors associated
with the zero eigenvalues, and let A\, be the diagonal matrix containing the
r nonzero eigenvalues. Then we have the following eigenvalue problem

AV, = U A, (4.87)
ATU, = VA, (4.88)
AV =0 (4.89)
ATUy = 0. (4.90)

Since the full matrices U and V satisfy UTU = UUT = I, and VTV =
VVT = I, it can be readily seen that AV = UA implies A = UAVT and

therefore ,
_ A O [VI] oy
amw[ (%] o
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This is the singular value decomposition. Notice that 0 represent rectangular
matrices of zeros. Since A, is 7 x r and A is n X m then the lower left block
of zeros must be n —r x r, the upper right must be » x m — r and the lower
right must be n —r x m —r.

It is important to keep the subscript r in mind since the fact that A can
be reconstructed from the eigenvectors associated with the nonzero eigenval-
ues means that the experiment is unable to see the contribution due to the
eigenvectors associated with zero eigenvalues.

4.1.9 Orthogonal projections

Above we said that the matrices V and U were orthogonal so that VIV =
VVT = I, and UT'U = UUT = I,. There is a nice geometrical picture
we can draw for these equations having to do with projections onto lines
or subspaces. Let v; denote the ith column of the matrix V. (The same

argument applies to U of course.) The outer product v;v} is an m x m

7

matrix. It is easy to see that the action of this matrix on a vector is to
project that vector onto the one-dimensional subspace spanned by v;:

<viviT) x = (vix)v;.
A “projection” operator is defined by the property that once you’ve applied
it to a vector, applying it again doesn’t change the result: P(Px) = Px, in
other words. For the operator v;v! this is obviously true since v v; = 1.
Now suppose we consider the sum of two of these projection operators: v;v} +
V]-VJ-T. This will project any vector in R™ onto the plane spanned by v; and
v;. We can continue this procedure and define a projection operator onto
the subspace spanned by any number p of the model eigenvectors:

p
Z VZ'V;F.
i=1

If we let p = m then we get a projection onto all of R™. But this must be
the identity operator. In effect we’ve just proved the following identity:

m
vivi =vvVT =1
i=1
On the other hand, if we only include the terms in the sum associated with

the r nonzero singular values, then we get a projection operator onto the
non-null space (which is the row space). So

T
> vivi =V,V!
i=1
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is a projection operator onto the row space. By the same reasoning
m
> vivi =WV
i=r+1

is a projection operator onto the null space. Putting this all together we can
say that
V.VE+ WV =1

This says that any vector in R™ can be written in terms of its component in
the null space and its component in the row space of A. Let x € R™, then

x =Ix = (V,V 4+ VoV§) x = (®)sow + (%) aun- (4.92)

4.1.10 A few examples

This example shows that often matrices with repeated eigenvalues cannot be
diagonalized. But symmetric matrices can always be diagonalized.

A= lg 21))] (4.93)

The eigenvalues of this matrix are obviously 3 and 3. This matrix has a
one-dimensional family of eigenvectors; any vector of the form (z,0)T will
do. So it cannot be diagonalized, it doesn’t have enough eigenvectors.

Now consider

A= lg g] (4.94)

The eigenvalues of this matrix are still 3 and 3. But it will be diagonalized
by any invertible matrix! So, of course, to make our lives simple we will
choose an orthogonal matrix. How about

01
o
l 10 ] ! (4.95)
That will do. But so will
1 1 -11
EREY) aso
So, as you can see, repeated eigenvalues give us choice. And for symmetric
matrices we nearly always choose to diagonalize with orthogonal matrices.
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Exercises

. Give specific (nonzero) examples of 2 by 2 matrices satisfying the fol-

lowing properties:

A?2=0,A%= I, and AB=—BA (4.97)

. Let A be an upper triangular matrix. Suppose that all the diagonal

elements are nonzero. Show that the columns must be linearly inde-
pendent and that the null-space contains only the zero vector.

. Figure out the column space and null space of the following two matri-

ces:

[(1) _Ollandlggg] (4.98)

. Which of the following two are subspaces of R": the plane of all vec-

tors whose first component is zero; the plane of all vectors whose first
component is 1.

. Let P be a plane in R? defined by z; — 625 + 1323 = —3. What is the

equation of the plane F; parallel to P but passing through the origin?
Is either P or P, a subspace of R3?

. Let

x = l —?12 ] . (4.99)

Compute ||z||1, ||z]|2, and ||z]]co-

. Define the unit ¢,-ball in the plane R? as the set of points satisfying

[zlle, < 1. (4.100)

Draw a picture of this ball for p =1, 2,3 and oo.

. Show that B = (ATA)7'A” is a left inverse and C = AT(AAT) ' is a

right inverse of a matrix A, provided that AAT and AT A are invertible.
It turns out that AT A is invertible if the rank of A is equal to n, the
number of columns; and AAT is invertible if the rank is equal to m,
the number of rows.

. Consider the matrix

l Cc‘ Z 1 (4.101)

The trace of this matrix is @ + d and the determinant is ad — cb. Show
by direct calculation that the product of the eigenvalues is equal to the
determinant and the sum of the eigenvalues is equal to the trace.

@
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10.

11.

12.

13.

As we have seen, an orthogonal matrix corresponds to a rotation. Con-
sider the eigenvalue problem for a simple orthogonal matrix such as

Q= l (1] _01 ] (4.102)

How can a rotation map a vector into a multiple of itself?

Show that the eigenvalues of A7 are the j-th powers of the eigenvalues
of A.

Using the SVD show that

AAT = Q22T Q. (4.103)
and

ATA = QX72Q.. (4.104)
The diagonal matrices XX7 € R™*™ and ©7% € R™ " have different
dimensions, but they have the same r nonzero elements: 01,09, -, 0.

Compute the SVD of the matrix

11 0
A=|00 1 (4.105)
00 —1

directly by computing the eigenvectors of AT A and AAT. Show that the
pseudoinverse solution to the linear system Az = y where y = (1,2,1)7
is given by averaging the equations.
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Chapter 5

SVD and Resolution in Least
Squares

In section 4.1.8 we introduced the singular value decomposition (SVD). The
SVD is a natural generalization of the eigenvector decomposition to arbitrary
(even rectangular) matrices. It plays a fundamental role in linear inverse
problems.

5.0.11 A Worked Example

Let’s begin by doing a worked example. Suppose that

and hence that

The eigenvalue problem for AA” is easy; since it is diagonal, its diagonal
entries are the eigenvalues. To find the eigenvalues of AT A we need to find
the roots of the characteristic polynomial

1-A 1 0
Det| 1 1-X 0 |=@1-N[1-X12-1]=0
0 0 1-—A

@

which are 2, 1 and 0.
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Now we can compute the data eigenvectors u; by solving the eigenvalue
problem

AATui = )\fui
for A? equal to 2 and 1. So

) =2 ()

The only way this can be true is if

Similarly, for A2 = 1 we have

e ().

In this example, there is no data null space:

10
tH

We could also solve the eigenvalue problem for AT A to get the model eigen-
vectors v;, but a shortcut is to take advantage of the coupling of the model
and data eigenvectors, namely that ATU, = V,A,, so all we have to do is
take the inner product of AT with the data eigenvectors and divide by the
corresponding singular value. But remember, the singular value is the square
root of \?, so

N V2
V] = ——= 1 0 <0>: %
V2101

0
and )
10 0
ve=1|1 0 (?): 0
0 1] 1
This gives us
C
¢
Vi=| % 0
| 0 1

To find the model null space we must solve AV = 0:
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1 10](" 0
00 1| "™ ]™%

This means that vi3 + v93 = 0 and wv33, so the normalized model null space
singular vector is

We can verify the SVD directly

A=UANVT

Remember, the only way that there can be no null space at all (no Uy or Vj)
isifn=m=r.

5.0.12 The Generalized Inverse

If there are no zero singular values the following matrix provides a one-sided
inverse of A:
At =VATUT

where A ! refers to the m x n matrix with 1/); on its main diagonal. The
matrix A’ is called the generalized inverse of A, or the pseudo-inverse. Be
careful to keep the dimensions straight; in the SVD

A=UAVT

we know that V' must be m x m (its columns span model space) and U must
be nxn (its columns span data space). Therefore A must be nxm. Similarly
if we write

VATIUT

it is clear that A~—! must refer to an m x n matrix. !

LFor this reason perhaps it is an abuse of notation to write A~!. Perhaps we should
write Al instead. The main danger of the current notation is that one is tempted to
assume that A='A = AA~! = I, which, as we have seen is not true in general.

@
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Whether A will be a left inverse or a right inverse depends on whether there
are more equations than unknowns (n > m) or fewer (m > n). There is a
two-sided (ordinary) inverse if and only if m = n = r, where r is the rank.
To see how this goes consider a concrete case, m = 3 and n = 2. So

[x 00
A= B 0]
and hence i
/A 0
At =1 0 1/x|.
| 0 0

Since At is VA~'U" then
ATA = VATIUTUAVT = VATIAVT.
Unfortunately we cannot simply replace A~*A by the identity:
/A 0 a0 0 100
0 1/X 0 1 0|=|0 1O
0 0 2 000

Therefore
VATIAVT £1.

On the other hand if we multiply A on the right by A" we get
AAT =UANUT,

And

0 1/X 0

AAlzll/)‘l 0 0]

1/8)\1 1/2/\2}:“] (1)]

So in this case we can see that A' is a right inverse but not a left inverse. You
can verify for yourself that if there were more unknowns than data (m > n),
At would be a left inverse of A.

If there are zero singular values, then the only thing different we must do is
project out those components. The SVD then becomes:

A=UANVT.
The generalized inverse is then defined to be

AT =V,ATUT.

@
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Note that in this case A, is an r X r matrix so
ATA =V, VT
and
AAT = U, UT.

The first of these is an identity matrix only if » = m and the second only if
r = n. You will show in an exercise however that in any case

ATAAT = AT

AATA=A

Let us explore the significance of the generalized inverse bit by bit. This
discussion is patterned on that in Chapter 12 of [AR80].

No Null Space

First consider the case in which there is no data or model null space. This
can only happen when r = m = n, in which case the generalized inverse is
the ordinary inverse.

A Data Null Space

Next consider the case in which there is a data null space Uy but no model
null space. Since ATUy = 0, it follows that U A = 0. And hence, the forward
operator A always maps models into vectors that have no component in Uj.
That means that if there is a data null space, and if the data have a
component in this null space, then it will be impossible to fit them
exactly.

That being the case, it would seem reasonable to try to minimize the misfit
between observed and predicted data, say,

min [|Am — d||?. (5.1)

L.e., least-squares. A least-squares minimizing model must be associated
with a critical point of this mis-fit function. Differentiating Equation 5.1
with respect to m and setting the result equal to zero results in the normal
equations®

2This is easy to prove if you write the norm-squared as an inner product: ||Am —

@
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AT Am = A"d (5.2)

Now,
ATA = (UANVDTUN VT = V,ATUTU A, VT

At this point we have to be a bit careful. We can be sure that UUT = UTU =
I,,, an n-dimensional identity. And that VVT = VTV = I,,. But this is not
true of V, if there is a Vg space, or U, if there is a U space. All we can be
certain of is that VTV, and U!U, will be r—dimensional identity matrices,

So we do know that
ATA = VA2V,

AT A is certainly invertible (since in this case there is assumed to be no model
null space) so the least squares solution is

my, = (V,AZV) "N (UA V) 'd = VAU d.

But this is precisely Afd. Let us denote the generalized inverse solution
by m! = A'd. In the special case that there is no model null space Vj,
m), = m'3
Now we saw above that A maps arbitrary model vectors m into vectors that
have no component in Uy. On the other hand it is easy to show (using the
SVD) that

Ur'd - Am") = U d - U'U,U'd = 0.

This means that Am' (since it lies in U,) must be perpendicular to d — Amf
(since it lies in Up).

A Geometrical Interpretation of Least Squares

If d were in the column space of A, then there would exist a vector m such
that Am = d. On the other hand, if d is not in the column space of A a
reasonable strategy is to try to find an approximate solution from within the
column space. In other words, find a linear combination of the columns of
A that is as close as possible in a least squares sense to the data. Let’s call

d||?> = (Am — d, Am — d). Expand this. You’ll get a sum of 4 inner products, such as
(Am, Am). You can differentiate this with respect to each of the components of m if
you like, but you can do this in vector notation with a little practice. For instance, since
(Am, Am) = (AT Am, m) = (m, AT Am), the derivative of (Am, Am) with respect to m
is ATAm + AT Am. You can move A back and forth across the inner product just by
taking the transpose.

*m' is the generalized inverse solution, Afd. It turns out this is unique. myg is any
solution of the normal equations. The complete connection between these two concepts
will be made shortly when we treat the case of a model null space.

@
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this approximate solution myg. Since Amyg is, by definition, confined to the
column space of A then Am) —d (the error in fitting the data) must be in the
orthogonal complement of the column space. The orthogonal complement of
the column space is the left null space, so Amjq — d must get mapped into
zero by AT:

A" (Amyg—d) =0

or

AT Amy, = A"d

which is just the normal equation again. Now we saw in the last chapter
that the outer product of a vector or matrix with itself defined a projection
operator onto the subspace spanned by the vector (or columns of the matrix).
If we look again at the normal equations and assume for the moment that
the matrix AT A is invertible, then the least squares solution is:

my, = (ATA4)"'A"d

Now A applied to the least squares solution is the approximation to the data
from within the column space. So Amyg is precisely the projection of the
data d onto the column space:

Amy = A(ATA) T ATA.
Before when we did orthogonal projections, the projecting vectors/matrices

were orthogonal, so AT A term would have been the identity, but the outer
product structure in Amls is evident.

The generalized inverse projects the data onto the column space of A.

A few observations:

e When A is invertible (square, full rank) A(ATA)1AT = AA1(AT) AT =

1, so every vector projects to itself.

e AT A has the same null space as A. Proof: clearly if Am = 0, then
AT Am = 0. Going the other way, suppose AT Am = 0. Then m” A" Am =
0. But this can also be written as (Am, Am) = ||Am||> = 0. By the
properties of the norm, [|[Am|]?> = 0 = Am = 0.

e As a corollary of this, if A has linearly independent columns (i.e., the
rank r = m) then AT A is invertible.

@
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A Model Null Space

Now let us consider the existence of a model null space V4 (but no data null
space Up). Once again, using the SVD, we can show that (since m' = Afd)

Am' = U A VIV, ATIUTd = d

since V'V, = I, and U, U! = I, = I,,. But since m' is expressible in terms
of the V, vectors (and not the Vj vectors), it is clear that the generalized
inverse solution is a model that satisfies Am' = d but is entirely confined to
V.

A consequence of this is that an arbitrary least squares solution (i.e., any
solution of the normal equations) can be represented as the sum of the gen-
eralized solution with some component in the model null space:

M
my, = m'+ Y v (5.3)
i=r+1
where by mjg we mean any solution of the normal equations. An immediate
consequence of this is that the length of m), must be at least as great as the
length of m' since

M
Jmygl|” = [Jmf|* + 3 of. (5.4)
i=r+1
To prove this just remember that ||my||* is the dot product of myg with itself.
Take the dot product of the right-hand-side of Equation 5.3 with itself. Not
only are the vectors v; mutually orthonormal, but they are orthogonal to mf
since m' lives in V, and V, is orthogonal to Vj.

This is referred to the minimum norm property of the generalized inverse.
Of all the infinity of solutions of the normal equations (assuming there is
a model null space), the generalized inverse solution is the one of smallest
length.

Both a Model and a Data Null Space

In the case of a data null space, we saw that the generalized inverse solution
minimized the least squares mis-fit of data and model response. While in the
case of a model null space, the generalized inverse solution minimized the
length of the solution itself. If there are both model and data null spaces,
then the generalized inverse simultaneously optimizes these goals. As an
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exercise, set the derivative of
[ Am — d||* + [|m]|?

with respect to m equal to zero and see what you get.

5.0.13 Examples

Consider the linear system

From the SVD we have

Lo
At=110
—|1o.
0 1

It is obvious that ms = 1 and that there are not enough equations to specify
my or my. All can say at this point is that m; + ms = 1. Some possible
solutions then are: m; = 0,my =1, my = 1, my =0, my; = .5, my = .5, and
so on. All of these choices explain the “data”.

The generalized inverse solution is ATd = (1/2,1/2,1)T. Here we see the key
feature of least squares (or generalized inverses): when faced with uncertainty
least squares splits the difference.

5.0.14 Resolution

Resolution is all about how precisely one can infer model parameters from
data. The issue is complicated by all of the uncertainties that exist in any
inverse problem: uncertainties in the forward modeling, the discretization
of the model itself (i.e., replacing continuous functions by finite-dimensional
vectors), noise in the data, and uncertainties in the constraints or a priori
information we have. This is why we a fairly elaborate statistical machinery
to tackle such problems. However, there is are situations in which resolu-
tion becomes relatively straightforward-whether these situations pertain in
practice is another matter.

One of these occurs when the problem is linear and the only uncertainties
arise from random noise in the data. In this case the true Earth model
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is linearly related to the observed data by d = Am + e where e is an n-
dimensional vector of random errors. The meaning of this equation is as
follows: if there were no random noise in the problem, e would be zero
and the true Earth would predict the data exactly (d = Am). We could
then estimate the true model by applying the pseudo-inverse of A to the
measurements. On the other hand, if e is nonzero, d = Am + e, we still get
the generalized inverse solution by applying the pseudo-inverse to the data:
m' = Afd. It follows that

m' = A" (Am +e). (5.5)

Later on we will discuss the error term explicitly. For now we can finesse the
issue by assuming that the errors have zero mean, in which case if we simply
take the average of Equation 5.5 the error term goes away.* For now let’s
simply assume that the errors are zero

m' = ATAm. (5.6)

This result can be interpreted as saying that the matrix AfA acts as a kind
of filter relating the true Earth model to the computed Earth model. Thus,

if ATA were equal to the identity matrix, we would have perfect resolution.
Using the SVD we have

m' = V,AT'UTU A,V 'm = V,V, 'm.

We can use UTU, = I whether there is a data null space or not. So in any
case the matrix V, VT is the “filter” relating the computed Earth parameters
to the true ones. In the example above, with

110
A‘l001]

the resolution matriz V,V,I is equal to

SR
SR
_ O O

This says that the model parameter mj3 is perfectly well resolved, but that
we can only resolve the average of the first two parameters m; and my. The

4 After we discuss probability in more detail we would take expectations as follows:
E[m'] = E[A" (Am + e)] = A'Am + E[e] = A'Am

since if the data have zero mean, Efe] = 0.
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more nonzero terms that appear in the rows of the resolution matrix, the
more broadly averaged our inferences of the model parameters.

Data resolution is connected to the fact that the observed data may be dif-
ferent than the data predicted by the generalized inverse. The latter is just
Am'. But this is AATd. So if we call this df, then we have a relation very
similar to that given by the resolution matrix:

d' = AAd = U AV V,AZUTd = U, UM d

so we can think of the matrix U,U! as telling us about how well the data are
predicted by the computed model. In our example above, there is no data
null space, so the data are predicted perfectly. But if there is a data null
space then the row vectors of U,U! will represent averages of the data.

5.1 Exercises

o Verify the following two “Penrose conditions”:
ATAAT = Al
AATA=A
e Show that minimizing
| Am — dJ]> + Aljm]?
with respect to m leads to the following generalized “normal equations”

(ATA + /\I) m = ATd.

e Show that ATA + A is always an invertible matrix.
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Chapter 6

Quick Summary of Probability
and Statistics

Collected here are a few basic definitions and ideas. Fore more details consult
a textbook on probability or mathematical statistics, for instance [Sin91],
[Par60], and [Bru65].

6.1 Sets

Probability is fundamentally about measuring sets. The sets can be finite,
as in the possible outcomes of a toss of a coin, or infinite, as in the possible
values of a measured P-wave impedance. The space of all possible outcomes
of a given experiment is called the sample space. We will usually denote the
sample space by €. If the problem is simple enough that we can enumerate
all possible outcomes, then assigning probabilities is easy.

Example 1

Toss a fair die twice. By “fair” we mean that each of the 6 possible out-
comes is equally likely. The sample space for this experiment consists of
{1,2,3,4,5,6}. There are six possible equally likely outcomes of tossing the
die. There is only one way to get any given number 1 — 6, therefore if A is
the event that we toss a 4, then the probability associated with A, which we
will call P(A) is

(6.1)
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Q

7] AU(B-C)C-BB (

N
Q

Figure 6.1: Examples of the intersection, union, and complement of sets.

where we use N(A) to denote the number of possible ways of achieving event
A and N(Q) is the size of the sample space.

6.1.1 More on Sets

The union of two sets A and B consists of all those elements which are either
in A or B; this is denoted by AU B or A + B The intersection of two sets
A and B consists of all those elements which are in both A and B; this is
denoted by A N B or simply AB. The complement of a set A relative to
another set B consists of those elements which are in A but not in B; this is
denoted by A — B. Often, the set B is this relationship is the entire sample
space, in which case we speak simply of the complement of A and denote this
by A°. These ideas are illustrated in Figure 6.1

The set with no elements in it is called the empty set and is denoted (). It’s
probability is always 0

P(0) = 0. (6.2)

Since, by definition, the sample space contains all possible outcomes, its
probability must always be 1

P(Q) = 1. (6.3)
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The other thing we need to be able to do is combine probabilities:!
P(AuB)=P(A)+ P(B)— P(AB). (6.4)
In particular, if the two events are exclusive, i.e., if AB = 0 then
P(AUB) = P(A) + P(B). (6.5)

This result extends to an arbitrary number of exclusive events A;

}%AluAQU--wJszziép@%) (6.6)

=1

This property is called additivity. Events A and B are said to be independent
if P(AB) = P(A)P(B).

Example 2

Toss the fair die twice. The sample space for this experiment consists of

{{1,1},{1,2},...{6,5},{6,6}}. (6.7)

Let A be the event that the first number is a 1. Let B be the event that the
second number is a 2. The the probability of both A and B occurring is the
probability of the intersection of these two sets. So

N(AB) 1

N©Q) 36 (6.8)

P(AB) =

Example 3

A certain roulette wheel has 4 numbers on it: 1, 2, 3, and 4. The even num-
bers are white and the odd numbers are black. The sample space associated
with spinning the wheel twice is

{1, 1}, {1, 2}, {1, 3}, {1,4}}

{{2,1},{2,2},{2,3},{2,4}}
{{3,1},{3,2},{3,3}, {3,4}}
{{4,1},{4,2},{4,3}, {4,4}}

!That P(AU B) = P(A) + P(B) for exclusive events is a fundamental axiom of prob-

ability.
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Now, in terms of black and white, the different outcomes are

{{black, black}, {black, white}, {black, black}, {black, white}}

{{white, black}, {white, white}, {white, black}, {white, white} }
{{black, black}, {black, white}, {black, black}, {black, white}}
{{white, black}, {white, white}, {white, black}, {white, white} }

Let A be the event that the first number is white, and B the event that the
second number is white. Then N(A) = 8 and N(B) = 8. So P(A) = 8/16
and P(B) = 8/16. The that event both numbers are white is the intersection
of A and B and P(AB) = 4/16.

Suppose we want to know the probability of the second number being white
given that the first number is white. We denote this conditional probability
by P(B|A). The only way for this conditional event to be true if both B
and A are true. Therefore, P(B|A) is going to have to be equal to N(AB)
divided by something. That something cannot be N(Q) since only half of
these have a white number in the first slot, so we must divide by N(A) since
these are the only events for which the event B given A could possibly be
true. Therefore we have
N(AB) P(AB)

PBIA) =Yoo = pon (6.9)

assuming P(A) is not zero, of course. The latter equality holds because we
can divide the top and the bottom of ]\]Iéég) by N(Q).

As we saw above, for independent events P(AB) = P(A)P(B). Therefore it
follows that for independent events P(B|A) = P(B).

6.2 Random Variables

If we use a variable to denote the outcome of a random trial, then we call
this a random wvariable. For example, let d denote the outcome of a flip of a
fair coin. Then d is a random variable with two possible values, heads and
tails. A given outcome of a random trial is called a realization. Thus if we
flip the coin 100 times, the result is 100 realizations of the random variable
d. Later in this course we will find it necessary to invent a new notation so
as to distinguish a realization of a random process from the random process
itself; the later being usually unknown.
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6.2.1 A Definition of Random

It turns out to be difficult to give a precise mathematical definition of ran-
domness, so we won’t try. (A brief perusal of randomness in Volume 2 of
Knuth’s great The Art of Computer Programming is edifying and frustrating
in equal measures.) In any case it is undoubtedly more satisfying to think
in terms of observations of physical experiments. Here is Parzen’s (1960)
definition, which is as good as any:

A random (or chance) phenomenon is an empirical phenomenon
characterized by the property that its observation under a given
set of circumstances does not always lead to the same observed
outcomes (so that there is no deterministic regularity) but rather
to different outcomes in such a way that there is statistical regu-
larity. By this is meant that numbers exist between 0 and 1 that
represent the relative frequency with which the different possible
outcomes may be observed in a series of observations of indepen-
dent occurrences of the phenomenon. ... A random event is one
whose relative frequency of occurrence, in a very long sequence of
observations of randomly selected situations in which the event
may occur, approaches a stable limit value as the number of ob-
servations is increased to infinity; the limit value of the relative
frequency is called the probability of the random event

It is precisely this lack of deterministic reproducibility that allows us to
reduce random noise by averaging over many repetitions of the experiment.

6.3 Bayes’ Theorem

Above we showed with a simple example that the conditional probability
P(B|A) was given by

P(B|A) = va(iﬁ) - Pp(?j). (6.10)

Let’s write this as
P(AB) = P(B|A)P(A). (6.11)

Now, the intersection of A and B is clearly the same as the intersection of B
and A. So P(AB) = P(BA). Therefore

P(AB) = P(B|A)P(A) = P(BA) = P(A|B)P(B). (6.12)
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So we have the following relations between the two different conditional prob-
abilities P(A|B) and P(B|A)

pipia) = PABIE) o
and P(B|A)P(A
Pl = CE (6.14)

These are known as Bayes’ theorem.

Suppose we have n mutually exclusive and exhaustive events C;. By mutually
exclusive we meant that the intersection of any two of the C; is the empty
set (the set with no elements)

CiC; = 0. (6.15)

By exhaustive we meant that the union of all the Cj fills up the entire sample
space (i.e., the certain event)

CiuCyUu---UC, =q. (6.16)
It is not difficult to see that for any event B, we have
P(B) = P(BC)) + P(BCy) + --- P(BC,). (6.17)

You can think of this as being akin to writing a vector as the sum of its
projections onto orthogonal (independent) directions (sets). Since the C;
are independent and exhaustive, every element in B must be in one of the
intersections BC;; and no element can appear in more than one. Therefore
B = BC1U--- BC,,, and the result follows from the additivity of probabilities.
Finally, since we know that for any C; P(BC;) = P(B|C;)P(C;) it follows
that

P(B) = P(B|C1)P(C1) + P(B|C2)P(Cy) + - -- P(B|Cn) P(Cr).  (6.18)

This gives us the following generalization of Bayes’ Theorem

_P(BC)  P(BIC)P(C)
PGIB) =518y = 5, P(BIC,) P(C)) (6:19)

6.4 Probability Functions and Densities

So far in this chapter we have dealt only with discrete probabilities. The
sample space () has consisted of individual events to which we can assign

@
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probabilities. We can assign probabilities to collections of events by using the
rules for the union, intersection and complement of events. So the probability
is a kind of measure on sets. 1) It’s always positive, 2) it’s zero on the null
set (the impossible event), 3) it’s one on the whole sample space (the certain
event), 4) and it satisfies the additivity property for an arbitrary collection
of mutually independent events A;:

P(AJUA,U---UA,) = P(A)) + P(A4y) +--- P(A,). (6.20)

These defining properties of a probability function are already well known to
us in other contexts. For example, consider a function M which measures the
length of a subinterval of the unit interval I = [0,1]. If 0 < z; < x5 < 1, then
A = [z, 2] is a subinterval of I. Then M(A) = xo — x; is always positive
unless the interval is empty, £1 = x5, in which case it’s zero. If A = I, then
M(A) = 1. And if two intervals are disjoint, the measure (length) of the
union of the two intervals is the sum of the length of the individual intervals.
So it looks like a probability function is just a special kind of measure, a
measure normalized to one.

Now let’s get fancy and write the length of an interval as the integral of some

function over the interval.
)

M(A) = /A,u(a:) dx E/z wu(zx) de. (6.21)

1
In this simple example using cartesian coordinates, the density function u is
equal to a constant one. But it suggests that more generally we can define a
probability density such that the probability of a given set is the integral of
the probability density over that set

P(A) = /A p(z) do (6.22)

or, more generally,

P(A) = /Ap(m,xz,---,:cn) day dag - - - dy. (6.23)

Of course there is no reason to restrict ourselves to cartesian coordinates.
The set itself is independent of the coordinates used and we can transform
from one coordinate system to another via the usual rules for a change of
variables in definite integrals.

Yet another representation of the probability law of a numerical valued ran-
dom phenomenon is in terms of the distribution function F(z). F(x) is
defined as the probability that the observed value of the random variable
will be less than z:

Fz)=P(X <z) = /z p(z') do'. (6.24)
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Clearly, F' must go to zero as z goes to —oo and it must go to one as = goes
to +o0o. Further, F'(z) = p(x).

Example 5

/f:e—f*¢r::v%. (6.25)

Let Q be the real line —co < 7 < co. Then p(z) = ﬁe*ﬁ is a probability
density on 2. The probability of the event z > 0, is then

1 o0 2 1
P >O:—/ dr = —. 6.26
@20) =2 [Te= dr= (6.26)
The probability of an arbitrary interval I’ is
Pzel)= / e d (6.27)
II

Clearly, this probability is positive; it is normalized to one
P(-oo < 7 < 00) = — /w - g =1 (6.28)
—00 x X)) = — (& Tr = , .
- = VT J =00

the probability of an empty interval is zero.

6.4.1 Expectation of a Function With Respect to a
Probability Law

Henceforth, we shall be interested primarily in numerical valued random
phenomena; phenomena whose outcomes are real numbers. A probability
law for such a phenomena P, can be thought of as determining a (in general
non-uniform) distribution of a unit mass along the real line. This extends
immediately to vector fields of numerical valued random phenomena, or even
functions. Let p(z) be the probability density associated with P, then we
define the expectation of a function f(z) with respect to P as

Blf@)] = [ f@p() dr. (6.29)
Obviously this expectation exists if and only if the improper integral con-
verges. The mean of the probability P is the expectation of z

T =FEz]= / xp(z) dx. (6.30)

—0o0
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For any real number £, we define the n-th moment of P about £ as E[(z—&)].
The most comment moments are the central moments, which correspond
to E[(z — Z)"]. The second central moment is called the variance of the
probability law.

Keep in mind the connection between the ordinary variable x and the random
variable itself; let us call the latter X. Then the probability law P and the
probability density p are related by

P(X <z)= / " p(a!) da. (6.31)

—0oQ

We will summarize the basic results on expectations and variances later in
this chapter.

6.4.2 Multi-variate probabilities
We can readily generalize a one-dimensional distribution such

Pzxe )= \/_ ; e dz, (6.32)

where I; is a subset of R, the real line, to two dimensions:

P((z,y) € L) = //1 @+9") dz dy (6.33)

where I, is a subset of the real plane R?. So p(z,y) = %e_($2+y2) is a joint

probability density on two variables. We can extend this definition to any
number of variables.

From an n—dimensional joint distribution, we often wish to know the prob-
ability that some subset of the variables take on certain values. These are
called marginal distributions. For example, from p(z,y), we might wish to
know the probability P(z € I;). To find this all we have to do is integrate
out the contribution from y. In other words

Pxel))= / / e~ @) d dy. (6.34)
nJ-

The multidimensional generalization of the variance is the covariance. Let
p(x) be a probability density on some vector space. The the ¢ —j components
of the covariance matrix are given by

Cig(m) = [ (zi = mi) (w; — my)p(x) dx (6.35)
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where m is the mean of the distribution
m = /xp(x) dx. (6.36)
Equivalently we could say that
C = E[(x —m)(x —m)7]. (6.37)

From this definition it is obvious that C' is a symmetric matrix. The diagonal
elements of the covariance matrix are just the ordinary variances (squares of

the standard deviations):
Cii(m) = ()% (6.38)

In n-dimensions, the normalized gaussian distribution with mean m and
covariance C' is given by

px) =

1 u—
rder Oy &P |y mm) IO (x —m)|. (6.39)

Might as well take C' =1

Since the covariance matrix is symmetric, we can always diagonalize it with
an orthogonal transformation involving real eigenvalues. It we transform
to principal coordinates (i.e., rotate the coordinates using the diagonalizing
orthogonal transformation) then the covariance matrix becomes diagonal.
So in these coordinates correlations vanish. But suppose one or more of the
eigenvalues is zero. This means that the standard deviation of that parameter
is zero; i.e., our knowledge of this parameter is certain. Another way to
say this is that one or more of the parameters is deterministically related
to the others. This is not a problem since we can always eliminate such
parameters from the probabilistic description of the problems. Finally, after
diagonalizing C' we can scale the parameters by their respective standard
deviations. In this new rotated, scaled coordinate system the covariance
matrix is just the identity.

6.5 Random Sequences

Often we are faced with a number of measurements {xz;} that we want to use
to estimate the quantity being measured z. A seismometer recording ambient
noise, for example, is sampling the velocity or displacement as a function of
time associated with some piece of the earth. We don’t necessarily know the
probability law associated with the underlying random process, we only know
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its sampled values. Fortunately, measures such as the mean and standard
deviation computed from the sampled values converge to the true mean and
standard deviation of the random process.

The sample average or sample mean is defined to be

T

1 N

Here is one form of the law of large numbers due to Khintchine (see [Bru65]
or [Par60]):

Theorem 8 Khintchine’s Theorem: If T is the sample mean of a random
sample of size n from the population induced by a random wvariable x with
mean p, and if € > 0 then:

P[||z — u|| > €] — 0 as n — oo.

In the technical language of probability the sample mean Z is said to converge
in probability to the population mean p. The sample mean is said to be an
“estimator” of true mean.

A related result is

Theorem 9 Chebyshev’s inequality: If a random variable X has finite mean
T and variance o2, then [Par60]:

2

_ o
PlIX -zl <ef>1-—

for any € > 0.

This says that in order to make the probability of X being within € of the
mean greater than some value p, we must choose € at least as large as ﬁ.
If p = .95, then ¢ > 4.470, while for p = .99, then ¢ > 100. For the
normal probability, this inequality can be sharpened considerably: the 99%
confidence interval is 2.58¢0. But you can see this in the plot of the nor-
mal probability in Figure 6.2. This is the standard normal probability (zero

mean, unit variance). Clearly nearly all the probability is within 3 standard

deviations.
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5 4 3 -2 -1 0 1 2 3 4 5

Figure 6.2: A normal distribution of zero mean and unit variance. Almost
all the area under this curve is contained within 3 standard deviations of the
mean.

6.6 The Central Limit Theorem

The other basic theorem of probability which we need for interpreting real
data is this: the sum of a large number of independent, identically distributed
random variables, all with finite means and variances, is approximately nor-
mally distributed. This is called the central limit theorem, and has been
known, more or less, since the time of De Moivre in the early 18-th cen-
tury. The term “central limit theorem” was coined by George Polya in the
1920s. There are many forms of this result, for proofs you should consult
more advanced texts such as [Sin91] and [Bru65].

Theorem 10 Central Limit Theorem: If T is the sample man of a sample
of size n from a population with mean p and standard deviation o, then for
any real numbers a and b with a < b

b 1
P,u—i—a—a 0]

b
<zr< u+——
/n Rem) 7 Ver

Since the central limit theorem says nothing about the particular distribution
involved, it must apply to even something as apparently non-Gaussian as
flipping a coin. Suppose we flip a fair coin 100 times and record the number
of heads which appear. Now, repeat the experiment a large number of times,
keeping track of how many times there were 0 heads, 1, 2, and so on up to
100 heads. Obviously if the coin is fair, we expect 50 heads to be the peak
of the resulting histogram. But what the central limit theorem says is that
the curve will be a Gaussian centered on 50.

@
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100 Trials 1000 Trials 10000 Trials
0.1 0.08 0.08
0.08 0.06 0.06
0.06 0.04 004
0.04
0.02 0.02 0.02
| 11l ! ‘ b ‘
0 50 100 O 50 100 0 50 100

Figure 6.3: Ouput from the coin-flipping program. The histograms show
the outcomes of a calculation simulating the repeated flipping of a fair coin.
The histograms have been normalized by the number of trials, so what we
are actually plotting is the relative probability of of flipping k& heads out of
100. The central limit theorem guarantees that this curve has a Gaussian
shape, even though the underlying probability of the random variable is not
Gaussian.

This is illustrated in Figure 6.3 via a little code that flips coins for us. For
comparison, the exact probability of flipping precisely 50 heads is

100! /100
SR <§> ~ .076. (6.40)

What is the relevance of the Central Limit Theorem to real data? Here
are three conflicting views quoted in [Bra90]. From Scarborough (1966):
“The truth is that, for the kinds of errors considered in this book (errors
of measurement and observation), the Normal Law is proved by experience.
Several substitutes for this law have been proposed, but none fits the facts
as well as it does.”

From Press et al. (1986): “This infatuation [of statisticians with Gaussian
statistics] tended to focus interest away from the fact that, for real data, the
normal distribution is often rather poorly realized, if it is realized at all.”

And perhaps the best summary of all, Gabriel Lippmann speaking to Henri
Poincaré: “Everybody believes the [normal law] of errors: the experimenters
because they believe that it can be proved by mathematics, and the mathe-
maticians because they believe it has been established by observation.”
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6.7 Expectations and Variances

Notation: We use E|[z] to denote the expectation of a random variable with
respect to its probability law f(z). If the probability is discrete then

Elz] = xf(z).

If the probability is continuous then

E[z] =/ zf(z) dx.

—0o0

Mixed probabilities (partly discrete, partly continuous) can be handled in a
similar way using Stieltjes integrals [Bar76).

We can also compute the expectation of functions of random variables:

Elg@)] = [ 6@)f(2) do

—0oQ

and mutatis mutandis for the discrete case. It will be left as an exercise
to show that the expectation of a constant a is a and the expectation of a
constant a times a random variable x is a times the expectation of x.

Recall that the variance of z is defined to be
V(z) = E[(z — E(x))*] = E[(z — n)?]
where y = Elz].

Here is an important result for expectations: E[(x — pu)?] = E[z?] — u?. The
proof is easy.

Blw—p)?) = El® - 2ou+ 4] (6.41)
= E[2% - 2uE[z] + 12 (6.42)
= E[r%—2u*+u° (6.43)
= E[z°] - i? (6.44)
This result is often written as
V(z) = 22 — 22 (6.45)

An important result that we need is the variance of a sample mean. For this
we need the following lemma, the proof of which will be left as an exercise:

Lemma 1 If a is a real number and x a random variable, then V(azx) =

a®V(z).
©
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From this it follows immediately that

V() = — 3 Vi),

i=1

In particular, if the random variables are identically distributed, with mean
p then V(z) = o%/n.

6.8 Bias

In statistics, the bias of an estimator of some parameter is defined to be the
expectation of the difference between the parameter and the estimator:

Bl6) = E[0 — 6] (6.46)

where @ is the estimator of 0. In a sense, we want the bias to be small so
that we have a faithful estimate of the quantity of interest.

An estimator 6 is unbiased if E[0] = 6

For instance, it follows from the law of large numbers that the sample mean
is an unbiased estimator of the population mean. In symbols,

Elz] = p. (6.47)
However, the sample variance
1N
== (z; — 1) (6.48)
N =
turns out not to be unbiased (except asymptotically) since E[s*] = "T’IUZ.

To get an unbiased estimator of the variance we use E[-"5s%]. To see this

note that
1 & e Lgs o o
SQZNE (x; — ) :N;ﬂxi—x.

i=1

Hence the expected value of s? is
2 1 & 2 —2
Els"] = = > Elzj] - E[7°].
Ni=
Using a previous result, for each of the identically distributed x; we have

E[z?] = V(2) + E[z]* = 0® + 1i*.

@



84 Quick Summary of Probability and Statistics

And .
E[z*] =V (%) + E[7)* = —0® + i*.
n
So . .
E|=0"+py*— =0 —p’ = U]
n n

Finally, there is the notion of the consistency of an estimator. An estimator
0 of 0 is consistent if for every ¢ > 0

Plll — 6| < ¢ — 1 as n — oco.

Consistency just means that if the sample size is large enough, the estimator
will be close to the thing being estimated.

6.9 Correlation of Sequences

Many people think that “random” and uncorrelated are the same thing.
Random sequences need not be uncorrelated. Correlation of 1D sequences
is measured by looking at the correlation of the sequence with itself, the
autocorrelation. If this is approximately a J-function, then the sequence is
uncorrelated (or “white”). In a sense, this means that the sequence does not
resemble itself for any lag other than zero. But suppose we took a deter-
ministic function, such as sin(z), and added small (compared to 1) random
perturbations to it. The result would have the large-scale structure of sin(x)
but with a lot of random junk superimposed. The result is surely still ran-
dom, even though it will not be a white sequence.

If the autocorrelation is not a d-function, then the sequence is correlated.
Figure 6.4 shows two pseudo-random Gaussian sequences with approximately
the same mean, standard deviation and 1D distributions: they look rather
different. In the middle of this figure are shown the autocorrelations of
these two sequences. Since the autocorrelation of the right-hand sequence
drops off to approximately zero in 10 samples, we say the correlation length
of this sequence is 10. In the special case that the autocorrelation of a
sequence is an exponential function, the the correlation length is defined
as the (reciprocal) exponent of the best-fitting exponential curve. In other
words, if the autocorrelation can be fit with an exponential e=?/!, then the
best-fitting value of [ is the correlation length. If the autocorrelation is not
an exponential, then the correlation length is more difficult to define. We
could say that it is the number of lags of the autocorrelation within which
the autocorrelation has most of its energy. It is often impossible to define
meaningful correlation lengths from real data.

@
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0 AN
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Figure 6.4: Two Gaussian sequences (top) with approximately the same
mean, standard deviation and 1D distributions, but which look very differ-
ent. In the middle of this figure are shown the autocorrelations of these
two sequences. Question: suppose we took the samples in one of these time
series and sorted them into monotonic order. Would this preserve the nice
bell-shaped curve?
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A simple way to generate a correlated sequence is to take an uncorrelated
one (this is what pseudo-random number generators produce) and apply some
operator that correlates the samples. We could, for example, run a length-L
smoothing filter over the uncorrelated samples. The result would be a series
with a correlation length approximately equal to L. A fancier approach would
be to build an analytic covariance matrix and impose it on an uncorrelated
pseudo-random sample.

Here is a simple Lisp-Stat code that builds an exponential covariance matrix
Cij = o2eMli—ill/1
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(defun exp-cov-matrix (dz clen std nvar)
"Args (dz clen std nvar)
Returns an 1-th order exponential covariance matrix
with correlation length len and standard deviation s"
(let* ((mat (make-array (list nvar nvar)))
(std2 (x std std))
)
(dotimes (i nvar)
(dotimes (j nvar)
(setf (aref mat i j)
(* std2 (exp (- (/ (x (abs (- i j)) dz) clen)))) )
)

mat

To impose this correlation on a white, Gaussian sequence, we do a Cholesky
decomposition? of the covariance matrix and dot the lower triangular part
into the uncorrelated sequence. Here is a Lisp-Stat code that does this

(defun correlated-gaussian (dz clen std nvar)
"Args (dz clen std nvar)
Returns a length nvar correlated gaussian sequence with correlation length clen"
(let* ((white (normal-rand nvar))
(chol (first (chol-decomp (exp-cov-matrix dz clen std nvar)))))
(matmult chol white)

The first part returned by the Cholesky decomposition function is the lower
triangular part of the matrix. The code correlated_gaussian.lsp (an exam-
ple of which is shown in Figure 6.5) implements this within a widget that
allows interactive selection of the parameters of the sequence (length, corre-
lation length, standard deviation) and displays the results. It’s worth byte-
compiling this function to speed it up.

2If A is a symmetric matrix, then we can always write A = LLT, where L is lower
triangular. If A is a covariance matrix and we use L to change variables to a new coordinate
system, the process will be uncorrelated in the new coordinates since det L = det LT =
vdet A, and det L is the jacobian of the transformation.
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= Plot [ =
Iy!
-
o
=
Iy]
= Correlated Gaussian Samples |J|Jl|
o
(show Autocorrelation
sample length 400 |(=| I '=H o
T
correlation length 25 = I =
standard deviation 3.5 [ | = =
|
| Generate Sample | | Quit xlisp-Stat | 8] 100 200 300 400

Figure 6.5: Program correlated_gaussian allows you to experiment with dif-
ferent correlation lengths and standard deviations. Here is an example of a
400 sample Gaussian sequence with a correlation length of 25 and a standard
deviation of 3.5

6.10 Other Common Analytic Distributions

There are many commonly used analytic distributions other than the normal
distribution. Let’s look at a few of them. Nearly as important theoretically as
the Gaussian, is the lognormal distribution; it is the distribution followed by
the exponential of a normally distributed random variable. Now the central
limit theorem talks about the sum of random variables; but the product of
exponentials is the exponential of the sum of the exponents. Therefore we
should expect that the lognormal would be important when dealing the a
product of i.i.d.> random variables. One of these distributions, sketched
in Figure 6.6, is the prototype of asymmetrical distributions. It also will
play an important role later, when we talk about so-called non-informative
distributions. In fact, there is a whole family of lognormal distributions given
by

o(z) = — exp [—i (log£>2] (6.49)

STV 2T 252 Zo

where xy plays the analog of the mean of the distribution and s governs
the shape. For small values of s (less than 1), the lognormal distribution is
approximately gaussian. While for large values of s (greater than about 2.5),
the lognormal approches 1/z. Figure 6.6 was computed for an s value of 2.

@
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Figure 6.6: This lognormal is a prototype for asymmetrical distributions. It
arises naturally when considering the product of a number of i.i.d. random
variables.

The Gaussian distribution is a member of a family of exponential distribu-
tions referred to as generalized Gaussian distributions. These distributions
are shown in Figure 6.7 for four different values of p, 1,2,10, and co. The
p = 1 distribution is called the Laplacian or double-exponential, and the
p = oo distribution is uniform.

Y Sy o Nt
pp(T) = 20,7 (1/p) p(p AL ) (6.50)

where I is the Gamma function [MF53| and o, is a generalized measure of
variance known as the dispersion of the distribution:

(0p)f = /o:o |z — xo|Pp(x) dx (6.51)

where zg is the center of the distribution.
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p=1

p=2

p=10

p=infinity

Figure 6.7: The generalized Gaussian family of distributions.
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Exercises

1. Show that for any two events A and B

P(AB¢) = P(A) — P(BA) (6.52)

2. Show that for any event A, P(A¢) =1 — P(A).
3. Show that 1/x is a measure, but not a probability density.

4. Show that the truth of the following formula for any two sets A and B
P(AuUB)=P(A)+ P(B)—- P(AUB) (6.53)

follows from the fact that for independent sets A’ and B’
P(AUB)=PA)+ P(B. (6.54)

Hint. The union of any two sets A and B can be written as the sum
of three independent sets of elements: the elements in A but not in B;
the elements in B but not in A; and the elements in both A and B.

5. Show that all the central moments of the normal distribution beyond
the second are either zero or can be written in terms of the mean and
variance.

6. You have made n different measurements of the mass of an object. You
want to find the mass that best “fits” the data. Show that the mass
estimator which minimizes the sum of squared errors is given by the
mean of the data, while the mass estimator which minimizes the sum
of the absolute values of the errors is given by the median of the data.
Feel free to assume that you have an odd number of data.

7. Show that Equation 6.39 is normalized.

8. Take the n data you recorded above and put them in numerical order:
1 < 9 < ... < x,. Compute the sensitivity of the two different
estimators, average and median, to perturbations in x,,.

What does this say about how least squares and least absolute values
treat “outliers” in the data?

9. Find the normalization constant that will make
p(z) = e (@ w0tap) (6.55)

a probability density on the real line. z, is a constant.
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What are the mean and variance?

Answer: The exponential integral is ubiquitous. You should remember
the following trick.

H=/ e dx

o= ([ [ )= [ e

Therefore

oo 2w 5 oo 2w
H2:/ / e_rrdrdﬁzé/ / e?dpdd=m
0o Jo o Jo

So H=/m
More complicated integrals, such as
/ e @) gy

appearing in the homework are just variations on a theme. First com-
plete the square. So

6—(zz—$$0+x3) — e—(w—wo/2)2—3/4z(2) )

And therefore

/OO e~ (@ —azotay) go — o 3/403 /Oo e (@=20/2 gy

—0o0

_3/ag2 [ _,2 3 /472
=e 3/4””0/ e dz = \/me™3/4%,
— 00

So the final result is that

1
plz) = ﬁe

3/41'(2)6—(1'2—1'1'0+m(2))

is a normalized probability.

Now compute the mean.

= Le?’/ﬂg /00 re~(#—20t35) g

NZS —o0
But this is not as bad as it looks since once we complete the sqaure,
most of the normalization disappears

I

T = e~ @=20/2” g

7L
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Changing variables, we get

1 o0 2
z= ﬁ/_m(x—i—xo/Z)ew dx

. [ ae o ! 2 [ e i
= — xe T+ —2x e .
VT = N
The first integral is exactly zero, while the second (using our favorite
formula) is just x¢/2, so T = x/2.

Similarly, to compute the variance we need to do

1 o0 5 1 oo R
2 _ 2 —(z—20/2) _ 2, —z
ot = — T —x9/2)% dx——/ z%e dz.
\/7?/_00( o/2) VT oo

Anticipating an integration by parts, we can write this integral as

1 [ _2 1 foo _,2 1
—§[wzd(e )_5/7006 dz—i\/?r
using, once again, the exponential integral result. So the variance is
just 1/2.

6.11 Computer Exercise

Write a program that computes the sample covariance matrix of repeated
recordings of a time series. To test your code, generate 25 correlated time
series of length 100 and use these as data. In other words the sample size
will be 25 and the covariance matrix will be of order 100. This should be a
snap if you use Lisp-Stat since it has a covariance-matriz function.
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Chapter 7

Linear Inverse Problems With
Uncertain Data

In Chapter 5 we showed that the SVD could be used to solve a linear inverse
problem in which the only uncertainties were associated with the data. The
canonical formulation of such a problem is

d=Am+e¢ (7.1)

where it is assumed that the forward operator A is linear and exactly known
and that the uncertainties arise from additive noise in the data. In most
geophysical inverse problems, the vector m is properly defined in an infinite
dimensional space of functions; for example, the elastic tensor as a function of
space. As a practical matter the model space is usually discretized so that the
problem is numerically finite dimensional. This is a potential source of error
(bias, discretization error), but for now we will ignore this and assume that
the discretization is very fine, but nevertheless finite. This is equivalent to
assuming a priori that the true Earth model is confined to a finite dimensional
subspace of the model space.

If there are no discretization errors, and if the forward model is linear and
known, then the observations d are the response of the ¢true model mr under
the action of A, provided there are no measurement or other systematic
erTors.

As defined in Section 6.5 m' is a pseudo-inverse estimator of the true model:
the generalized solution of Equation 7.1 is given by m' = Afd. Since d is
the response of the true model, my, ., it follows that

m' = ATd = AT (Amyye + €) = ATAmy, + Afe.
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96 Linear Inverse Problems With Uncertain Data

In terms of the SVD, the resolution matrix ATA can be written V,VI and
so represents a projection operator onto the non-null space of the forward
problem (i.e., the row space). Since none of the columns of V, lie in the null
space of A, the net result of this is that ATA can have no component in the
null space. So, apart from the noise, the matrix ATA acts as a filter through
which we see the Earth.

We proved in Section 4.1.9 that a projection operator onto the null space is
VoVl = 1= VIVE (7.2)

and therefore
(ATA —I)mp = — [mT]null . (7.3)

The null space components of the true model have a special statistical signif-
icance. In statistics, the bias of an estimator of some parameter is defined to
be the expectation of the difference between the parameter and the estimator
(see Section 6.8):

Bl0] = E[f — 0] (7.4)

where @ is the estimator of 0. In a sense, we want the bias to be small so
that we have a faithful estimate of the quantity of interest. For instance, it
follows from the linearity of the expectation that the sample mean X is an
unbiased estimator of the population mean u:

Elx] = p (7.5)
and hence F[x — p] = 0.

Using the previous result we can see that the bias of the generalized inverse
solution as an estimator of the true earth model is just (minus) the projection
of the true model onto the null space of the forward problem:

B(m') = E[m' — myy
= F[ATd — my]
= E[ATAmye + Afe — mypy]
= (ATA—T) Elmy] + ATEe] (7.6)

and so, assuming that the noise is zero mean (E[e] = 0), we can see that
the bias is simply the projection of the true model’s expected value onto the
null-space. If we assume that the true model is non-random, then E[my..| =
my.. LThe net result is that the bias associated with the generalized inverse
solution is the component of the true model in the null space of the forward
problem. Inverse problems with no null-space are automatically unbiased.
But the existence of a null-space does not automatically lead to bias since

@
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the true model could be orthogonal to the null-space. If the expected value of
the true model is a constant, then this orthogonality is equivalent to having
the row sums of the matrix ATA — I be zero. In fact, the requirement that
the row sums of this matrix be zero is sometimes stated as the definition of
unbiasedness [OP95], but as we have just seen, such a definition would, in
general, be inconsistent with the standard statistical use of this term.

7.0.1 Model Covariances

Estimators are functions of the data and therefore random variables. The
covariance of a random variable x is the second central moment:

C = E[(x — E[x])(x — E[x])"]. (7.7)

The covariance of the generalized inverse estimate m' = Afd is easy to
compute. First realize that if d has zero mean than so does m', and therefore
assuming zero mean errors

Cov(rn) = E[m'm!"] = AfCov(d)A!" (7.8)

If the data are uncorrelated, then Cov(d) is a diagonal matrix whose elements
are the standard deviations of the data. If we go one step further and assume
that all these standard deviations are the same, 02, then the covariance of
the generalized inverse estimate takes on an especially simple form:

Cov(m') = gJATAY = G5V, APV

We can see that the uncertainties in the estimated model parameters (ex-
pressed as Cov(dm')) are proportional to the data uncertainties and inversely
proportional to the squared singular values. This is as one would expect: as
the noise increases, the uncertainty in our parameter estimates increases; and
further, the parameters associated with the smallest singular values will be
less well resolved than those associated with the largest.

7.1 The World’s Second Smallest Inverse Prob-
lem

Suppose we wanted to use sound to discover the depth to bedrock below our
feet. We could set off a loud bang at the surface and wait to see how long it

T.e., assume that the data are #id with mean zero and standard deviation oy.
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98 Linear Inverse Problems With Uncertain Data

would take for the echo from the top of the bedrock to return to the surface.
Then, assuming that the geologic layers are horizontal, can we compute the
depth to bedrock z from the travel time of the reflected bang ¢t? Suppose we
do not know the speed with which sounds propagates beneath us, so that all
we can say is that the travel time must depend both on this speed and on
the unknown depth

t=2z/c

Since this toy problem involves many of the complications of more realistic
inverse calculations, it will be useful to go through the steps of setting up and
solving the calculation. We can absorb the factor of two into a new sound
speed ¢ and write

t=z/c. (7.9)

So the model vector m is (z, ¢) since ¢ and z are both unknown, and the data
vector d is simply t. The forward problem is g(m) = z/c. Notice that g is
linear in depth, but nonlinear in sound speed c. We can linearize the forward
problem by doing a Taylor series expansion about some model (2, ¢y) and
retaining only the first order term:

f=tg 4 2 [l,_l] lgfz] (7.10)

20 Co

where ty = 29/co. Pulling the ty over to the left side and diving by ¢, we have

o _ -1 [ ‘;E ] (7.11)

to o

In this particular case the linearization is independent of the starting model
(20, o) since by computing the total derivative of of ¢t we get

ot oz dc

—=— - —. (7.12)

t z c
In other words, by defining new parameters to be the logarithms of the
old parameters, or the dimensionless perturbations, (but keeping the same
symbols for convenience) we have

t=z-—c. (7.13)

In any case, the linear(-ized) forward operator is the 1 x 2 matrix A = (1, —1)
and

ATA = l L ] . (7.14)

@
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The eigenvalues of AT A are 2 and 0.2 2 is the eigenvalue of the (unnormal-
ized) eigenvector (1,—1)7, while 0 is the eigenvalue of (1,1)”. This has a
simple physical interpretation. An out of phase perturbation of velocity and
depth (increase one and decrease the other) changes the travel time, while
an in phase perturbation (increase both) does not. Since an in phase pertur-
bation must be proportional to (1,1)7, it stands to reason that this vector
would be in the null space of A. But notice that we have made this physical
argument without reference to the linearized (log parameter) problem. How-
ever, since we spoke in terms of perturbations to the model, the assumption
of a linear problem was implicit. In other words, by thinking of the physics
of the problem we were able to guess the singular vectors of the linearized
problem without even considering the linearization explicitly.

In the notation we developed for the SVD, we can say that V,, the matrix
of non-null-space model singular vectors is (1, —1)%, while V;, the matrix
of null-space singular vectors is (1,1)7. And hence, using the normalized
singular vectors, the resolution operator is

V. VT = % [ _11 _11 ] . (7.16)

The covariance matrix of the depth/velocity model is
ATCov(d)AM = g2 AT AT (7.17)

assuming the single travel time datum has normally distributed error. Hence
the covariance matrix is

Cov(m) = (%)2 l _11 —11 ] , (7.18)

The important thing to notice here is that this says the velocity and depth
are completely correlated (off diagonal entries magnitude equal to 1), and
that the correlation is negative. This means that increasing one is the same
as decreasing the other. The covariance matrix itself has the following eigen-
value/eigenvector decomposition.

o=@ [ 4] [L0][ 7] o

These orthogonal matrices correspond to rotations of the velocity /depth axes.
These axes are associated with the line z/c = t. So for a given travel time

\/_2 | . :

where U, = 1, A, = /2, and V, = 1/v/2[1, —1]7.
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t, we can be anywhere on the line z = tc: there is complete uncertainty
in model space along this line and this uncertainty is reflected in the zero
eigenvalue of the covariance matrix.

7.1.1 The Damped Least Squares Problem

The generalized inverse solution of the two-parameter problem is

ml = Alt = % [ _11 ] : (7.20)

As we have seen before, least squares tends to want to average over ignorance.
Since we cannot determine velocity and depth individually, but only their
ratio, least squares puts half the data into each. Damping does not change
this, it is still least squares, but it does change the magnitude of the computed
solution. Since damping penalizes the norm of the solution, we can take
an educated guess that the damped solution should, for large values of the
damping parameter A, tend to

t 1
) o
For small values of A, the damped solution must tend to the already com-

puted generalized inverse solution. It will be shown shortly that the damped
generalized inverse solution is

ml = L l _11 ] . (7.22)

Exact Solution

The damped least squares estimator satisfies
(ATA+ X)m,, = ATd.
Since the matrix on the left is by construction invertible, we have

m'y = (ATA+ A 'ATd.

If
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then

T 1 1 14+ A 1
(A"A+ \I) _7(2_”\))\[ 1 1+)\].

So the exact damped least squares solution is

1 1+X 1 1],_ t [
ATRFEANN] T 1A || -1 xx2| -1

Damping changes the covariance structure of the problem too. We will not
bother deriving a analytic expression for the damped covariance matrix, but
a few cases will serve to illustrate the main idea. The damped problem
[ATA + XMJm = A"d, is equivalent to the ordinary normal equations for the

augmented matrix
A
Ay = l I ] (7.23)

where A is the original matrix and I is an identity matrix of dimension equal
to the number of columns of A. In our toy problem this is

1 -1
A= VA0 | (7.24)
0 VA

The covariance matrix for the augmented system is

Cov(m) = Al Cov(d)Al". (7.25)

For example, with A = 1 the velocity /depth covariance is

o2 1

Cov(z,c) = 3 l 1 9 ] . (7.26)
Right away we can see that since the eigenvalues of this matrix are 1 and 3,
instead of a degenerate ellipsoid (infinite aspect ratio), the error ellipsoid of
the damped problem has an aspect ratio of 3. As the damping increases, the
covariance matrix becomes increasingly diagonal, resulting in a circular error
ellipsoid. You will calculate the analytic result as an exercise. Your result
should become degenerate as A — 0.

Exercises

e Extend the two-parameter travel time inversion problem to the case in
which the ray reflects from the flat interface at an angle of 6, measured
relative to the vertical. I.e, # = 0 would correspond to a ray that goes
straight up and down. Assume that the travel time can be measured
with an uncertainty of o second.

@



102

Linear Inverse Problems With Uncertain Data

e Compute the pseudoinverse and resolution matrix of

1 -1 2 0

4 -4 0 0
Assuming the right hand side is (0, 1), what is the least squares esti-
mator of the 4-dimensional model vector.

Compute the pseudoinverse and resolution matrix of

1. -1

4 —4

0 1

0 -1

Assuming the right hand side is (0,1, —1,0)7, what is the least squares
estimator of the 4-dimensional model vector.

Assuming the data covariance matrix is

1 0 0 0
0 .5 0 0
0 0 .1 0
0 0 0 .0001

compute the covariance of matrix of the least squares estimator.

Find the inverse of the covariance matrix in Equation 7.26. Now see
if you can find the square root of this matrix. I.e., a matrix such that
when you square it, you get the inverse of the covariance matrix.

Compute the exact covariance and resolution for the damped two-
parameter problem.



Chapter 8

From Bayes to Weighted Least
Squares

In the last chapters we have developed the theory of least squares estimators
for linear inverse problems in which the only uncertainty was the random
errors in the data. Now we return to our earlier discussion of Bayes theorem
and show how within the Bayesian strategy we can incorporate prior infor-
mation on model parameters and still get away with solving weighted least
squares calculations.

Denote by f(m,d) the joint distribution on models and data. Recall that
from Bayes’ theorem, the conditional probability on m given d is

planja) = LT

where f(d|m) measures how well a model fits the data, p(m) is the prior
model distribution, and A(d) is the marginal density of d. The conditional
probability p(m|d) is the so-called Bayesian posterior probability, expressing
the idea that p(m|d) assimilates the data and prior information.

For now we will assume that all uncertainties (model and data) can be de-
scribed by Gaussian distributions. Since any Gaussian distribution can be
characterized by its mean and covariance, this means that we must spec-
ify a mean and covariance for both the a priori distribution and the data
uncertainties.

In this case the Bayesian posterior probability is the normalized product of
the following two functions:

(2m)—™ ox [
det Cp P

_l(g(m) - dobs)TCL_)l(g(m) —dghg)| 5
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(8.1)

where d ;¢ is the vector of observed data which dimension is n, Cp is the
data covariance matrix and g(m) is the forward operator; and

(2m)—m exp [ 1 ] ’

T -1
det Cyy _§(m - mprior) Cy (m— mprior)

(8.2)

where m is the number of model parameters and C, is the covariance matrix
describing the distribution of models about the prior model m .. If the
forward operator is linear, then the posterior distribution is itself a Gaussian.
If the forward operator is nonlinear, then the posterior is non-Gaussian.

If we want to estimate the true model we still have the problem of defining
what sort of estimator we want to use. Maybe this is not what we want.
It may suffice to find regions in model space which have a high probability,
as measured by the posterior. But for now let’s consider the problem of
estimating the true model. A reasonable choice turns out to be: look for the
mean of the posterior.! If the forward operator is linear (so that g(m) =
Gm for some matrix GG), then Tarantola [Tar87] shows that the normalized
product

o(m) o exp —% [(Gm — dops) 'O (Gm — dyps)

+ (0 — Mprior) Oy (M — Mprior)] - (8.3)
can be written as
() o exp [ (1~ M) 3} (0 — M) (8.4
where
Cur = [GTCH'G+Ci] (8.5)

is the covariance matrix of the posterior probability. This is approximately
true even when ¢ is nonlinear, provided it’s not too nonlinear.

Here my,,p, is the maximum of the posterior distribution, which for a Gaus-
sian is also the mean. So to find our estimator we need to optimize Equa-
tion 8.3. But that is equivalent to minimizing the exponent:

mniln [(Gm — dobs)TC,Sl(Gm — dobs) + (m - mprior)TCﬂ}l (m - mprior)] .
(8.6)
But this is nothing but a weighted least squares problem. This is even easier
to see if we introduce the square roots of the covariance matrices. Then the
first term above is

(") (Gm = doys), Cp*(Gm = dgp) ) = [[C5"*(Gm — dopy)

1We will take up the reasonableness of this choice later.
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while the second term is
1C377 (0 = Miprior) |-

Every symmetric matrix has a square root. To see this consider the diago-
nalization of such a matrix via an orthogonal transformation:

A=QAQ"
It is easy to see that
A= (QAI/QQT) (QAI/QQT) — QA1/2A1/2QT — QAQT

where the meaning of A'/? is obvious since it is diagonal with real elements.
So QA2QT is the square root of A.
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Chapter 9

Examples: Absorption and
Travel Time Tomography

Before we go any further, it will be useful to motivate all the work we’re
doing with a an example or two that are sufficiently simple that we can do
all the calculations without too much stress. Both of these are examples of
“tomography”. The word tomography comes from the Greek tomos meaning
section or slice. The idea is to use observed values of some quantity which
is related via a line integral to the physical parameter we wish to infer. The
first example, x-ray absorption, is the basis of the medical CAT-scan. The
second example, seismic travel time tomography, is is a widely used method
of imaging the earth’s interior.

9.1 The X-ray Absorber

Most of the examples shown here are based on an idealized two-dimensional
x-ray absorption experiment. This experiment consists of the measurement
of the power loss of x-ray beams passing through a domain filled with an
x-ray absorber.

We suppose that the absorber is confined to the unit square,
(z,y) €[0,1] ®[0,1];

we will represent this domain by Dx. We also suppose that the sensing beam
follows a perfectly straight path from transmitter to receiver and that the
transmitter and receiver are located on the perimeter of the unit square. The
geometry of a single x-ray absorption measurement looks like this:

@
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transmitter

receiver

\ unit square D

9.1.1 The Forward Problem

Let ¢(z,y) be the absorption coefficient in Dx; we assume that ¢(x, y) is non-
negative everywhere. Let I be the emitted beam intensity from a transmit-
ter, T'; and let Iz be the received intensity at some receiver, R. Then the
absorption law is exactly

T
Izp =1I7e” fR cl@y)dA (91)

where the integral is along the (perfectly straight) path from 7" to R and dA
is arc-length along the path. (Note that ¢(z,y) = 0 in a vacuum and the
exponent in equation (9.1) vanishes.)

It is convenient to replace intensities with
Iy -1
=1

which is just the fractional intensity drop. p has the virtues that

) (9.2)

e p is independent of transmitter strength, Iy,
e p =0 for a beam which passes only through a vacuum,

e p > 0 for all reasonable media! and, in fact, 0 < p < 1, if ¢(z,y) is
everywhere non-negative and finite.

LA “reasonable” medium is one which does not add energy to beams passing through.
A laser is not a reasonable medium.
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For our uses, we will need two types of absorption calculations:

exact We will want an ezact calculation which we can use to generate syn-
thetic data to test our inverse algorithms. This calculation mimics the
data generation process in nature. This calculation should either be
exact or at least much more accurate than the associated linearized
calculation (if we wish to study uncertainties and ambiguities in the
inverse process, rather than errors in the synthetic data generator).

linear We will also want a calculation in which the relation between a
model’s parameters and the observations predicted for that model is
linear. The precise linear relationship will form the heart of a linear
inverse calculation.

The difference between these two calculations is a measure of the problem’s
non-linearity. The next few subsections describe these two calculations in
more detail.

Exact Absorption

Let pezact be the exact absorption calculation. We can think of pegeci(c; T, R)
as a computer program to which is given the transmitter and receiver loca-
tions and the function ¢(z,y) which defines the absorption coefficient every-
where in Dx. This program then returns the fractional intensity drop for the
path TR through the medium c(z,y).

The calculation itself is quite straightforward. In an actual application we
would have to specify the accuracy with which the quadrature along the
ray path is performed. In the calculations discussed here, we performed the
quadrature by dividing the ray path into segments of a fixed length and then
summing the contribution to the integral from each tiny segment. We took
the segment length to be about 1073; recall that the sides of the model are
of unit length.

9.1.2 Linear Absorption

A simple way to linearize the exact calculation, equation (9.1), is to assume
that the path integral,

/T c(x,y)dA
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is small. Since e* =~ 1 + z for small x, we have

T
Iz ~ Ir (1 - /R c(z, y)d)\)

or
T
Dtinoar R /R e(z, y)dA (9.3)

This result is a good approximation to the extent that the total relative
absorption is much less than one.

An exact linearization can be had by changing the observable quantity from
p to log(Ig/Ir). Simply involves taking the logarithm of equation 9.1 leads
to

log(Ip/Ir) = — /R " @ y)d

which assures us that the logarithms of the observed intensities are exactly
linear in the absorption coefficient distribution (¢(x,y)).

I chose the approximate form, (9.3), when I developed the examples in order
to induce some non-linearity into the calculation. At the time, I intended
that we would discuss linearizing non-linear problems. As events turned out,
we didn’t get that far.

Linearization Errors

It is very easy to compute the errors due to linearization in this case, since
Pexact Can be easily related to pppeqr as

Pexact = 1 — e_plinear.

Here is a plot of the fractional error of the linearized absorption,

Plinear — Pexact

Pezact

as a function of pegqees:

@
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Exact
Notice that the error expressed as a fraction is of the same order as the frac-
tional absorption (pezect). (For example, when pegoee = 0.5, error ~ 40%.)
In a rough sense, if we think of linearization as neglecting a quadratic term
which has about the same coefficient as the linear term we are retaining,
then we should expect an error of the same order as the quantity which has
been linearized. Although this property is so simple as to be self-evident, it
almost always comes as an ugly surprise in any particular application.

9.1.3 Model Representation

All of our inverse calculations use a model consisting of a regular array of
homogeneous rectangular blocks. We completely specify a model’s geometry
by specifying the number of blocks along the z-axis (/V;) and the number of
blocks along the y-axis (V,). We completely specify a model by specifying its
geometry and by specifying the N, N, constant absorptivities of the blocks.

Here is the geometry of a model with N, =4, N, = 5:

We will need to map the cells in a model onto the set of integers {1, ... N, N, }.
Let C}; be the upper-left corner, Cy,; be the upper-right corner, and let
Cn,n, be the lower-right corner. The matrix {Cj;} is mapped onto the vector
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{my} a row at a time, starting with the first (lowermost) row:

{m;} = {Cu,...Cn,1, Cia-. -CNmNy}

I chose this representation because it is very simple (possibly too simple for
some applications) and it is strongly local. The latter property simply means
that a perturbation in a model parameter only changes the values of ¢(z, y)
in a limited neighborhood. Strong locality makes some results quite a bit
easier to interpret; the trade-off is that locality is always associated with
discontinuities in the representation’s derivatives.

Model Sensitivity Vector

Let TR be the path joining a given transmitter-receiver pair, and let m be
an absorption model, a vector of length N,N,. We want to find a vector,
q(TR), a function of the path TR and of dimension N, N, such that

plinear(m; Ta R) = Q(ﬁ) - m. (94)

It is easy to see, by inspection of (9.3), that q; is simply the length of the
portion of the path TR that passes through the ith block.

Notice that the components of q depend only upon the model representation
and the path T'R. In particular, they are independent of the absorptivities.

9.1.4 Some Numerical Results

Here is a perspective view of a model consisting of a centered disc of radius
0.25; inside the disc the absorption coefficient is 0.1 and outside of the disc
it vanishes.

We sent nine shots through this structure. All of the shots came from a
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common transmitter in the upper-left corner and went to receivers spread
along the right-hand side. The model and shot geometry looks like this:

Here are the computed values of peqct as a function of receiver elevation:
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The numerical value of the extinction for the lowermost ray was 0.048757.
This ray traveled from the point (0,0.9), the transmitter, to (1,0.1), the re-
ceiver. The value of the integrated absorptivities along the path, the path
integral in equation (9.1), should have been exactly 0.05 (as a little contem-
plation should show). From this we compute py. = 0.048771, which is in
satisfactory agreement. (Note that the linearized estimate is exactly 0.05
and it is about 1% high.)
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Figure 9.1: Plan view of the model showing one source and five receivers.

9.2 Travel Time Tomography

Along the same lines as the x-ray absorption problem, the time-of-flight of
a wave propagating through a medium with wavespeed v(z,y, z) is given by
the line integral along the ray of the reciprocal wavespeed (slowness or index

of refraction)
d\

/V(x,y,z) v(z,y,2)
The problem is to infer the unknown wavespeed of the medium from repeated
observations of the time-of-flight for various transmitter/detector locations.
For the sake of definiteness, let’s suppose that the source emits pressure
pulses, the receiver is a hydrophone, and the medium is a fluid.

Figure (9.1) shows a 2D model of an anomaly embedded in a homogeneous
medium. Also shown are 5 hypothetical rays between a source and 5 detec-
tors. This is an idealized view on two counts. The first is that not only is
the raypath unknown-rays refract—but the raypath depends on the unknown
wavespeed. This is what makes the travel time inversion problem nonlin-
ear. On the other hand, if we can neglect the refraction of the ray, then
the problem of determining the wavespeed from travel time observations is

completely linear.
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The second complicating factor is that a “travel time” is only unambiguously
defined at asymptotically high frequencies. In general, we could define the
travel time in various ways: first recorded energy above a threshold, first
peak after the threshold value is surpassed, and others. Further, the travel
times themselves must be inferred from the recorded data, although it is
possible in some cases that this can be done automatically; perhaps by using
a triggering mechanism which records a time whenever some threshold of
activity is crossed.

For purposes of this example, we will neglect both of these difficulties. We
will compute the travel times as if we were dealing with an infinite frequency
(perfectly localized) pulse, and we will assume straight ray propagation. The
first assumption is made in most travel time inversion calculations since there
is no easy way around the difficulty without invoking a more elaborate theory
of wave propagation. The second assumption, that of linearity, is easily
avoided in practice by numerically tracing rays through the approximate
medium. But we won’t worry about this now.

9.3 Computer Example: Cross-well tomogra-
phy

In the code directory you will find both Mathematica and Lisp-Stat imple-
mentations of straight-ray tomography. These are both extensive codes and
will not be described in detail here. They both begin by setting up the
source/receiver geometry of the problem, computing a Jacobian matrix and
fake travel times, adding noise to these and doing the least squares problem
via SVD. Here we just show some of the results that you will be able to get.

In Figure (9.2) you see a plot of the Jacobian matrix itself. Black indicates
zero elements and white nonzero. This particular matrix is about 95% sparse,
so until we take advantage of this fact, we'll be doing a lot of redundant
operations, e.g., 0 x 0 = 0.

Below this we show the “hit count”. This is the summation of the ray
segments within each cell of the model and represents the total “illumination”
of each cell.

Below this we show the exact model whose features we will attempt to re-
construct via a linear inversion.

Finally, before we can do an inversion, we need some data to invert. First
we’ll compute the travel times in the true model shown above, then we’ll
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Jacobian matrix

lllumination per cell

—
o7
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Ve L 7

2t 70 Exact model
LT~AL7

Figure 9.2: Jacobian matrix for a cross hole tomography experiment involving
25 x 25 rays and 20 x 20 cells (top). Black indicates zeros in the matrix and
white nonzeros. Cell hit count (middle). White indicates a high total ray
length per cell. The exact model used in the calculation (bottom). Starting
with a model having a constant wavespeed of 1, the task is to image the
perturbation in the center.
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compute the travel times through a background model which is presumed to
be correct except for the absence of the anomaly. It’s the difference between
these two that we take to be the right hand side of the linear system

Jom = éd

relating model perturbations to data perturbations. The computed solutions
are shown in Figure 9.3.

Finally, in Figure (9.4), we show the spectrum of singular values present in the
jacobian matrix, and one well resolved and one poorly resolved model singular
vectors. Note well that in the cross hole situation, vertically stratified features
are well resolved while horizontally stratified features are poorly resolved.
Imagine the limiting case of purely horizontal rays. A v(z) model would be
perfectly well resolved, but a v(z) model would be completely ambiguous.
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SVD reconstructions

First 10 singular values

First 50 singular values

All singular values above

Figure 9.3: SVD reconstructed solutions. Using the first 10 singular values
(top). Using the first 50 (middle). Using all the singular values above the
default Mathematica tolerance (bottom).
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4 Singular values

50 100 150 200 250 300 350

A well resolved singular ve

A poorly resolved singular

Figure 9.4: The distribution of singular values (top). A well resolved model
singular vector (middle) and a poorly resolved singular vector (bottom). In
this cross well experiment, the rays travel from left to right across the figure.
Thus, features which vary with depth are well resolved, while features which
vary with the horizontal distance are poorly resolved.
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Chapter 10

Iterative Linear Solvers

We have seen throughout the course that least squares problems are ubiqui-
tous in inverse theory for two main reasons. First, least squares gives rise to
linear problems, which are relatively easy to deal with. And secondly, finding
the maximum of a Gaussian distribution is a least squares problem. That
means that if the final a posteriori probability on the models is Gaussian,
then finding the maximum a posteriori (MAP) model amounts to solving
a weighted least squares problem. For both reasons, least squares is very
important and a number of specialized numerical techniques have been de-
veloped. In this chapter we digress and discuss a very useful class of iterative
algorithms for solving linear systems. These methods are at the core of most
large-scale inverse calculations.

10.1 Classical Iterative Methods for Large Sys-
tems of Linear Equations

A direct method for solving linear systems involves a finite sequence of steps,
the number of which is known in advance and does not depend on the matrix
involved. Usually nothing can be gained by halting a direct method early;
it’s all or nothing. If the matrix is sparse, direct methods will almost always
result in intermediate fill, the creation of new nonzero matrix elements during
the solution. Fill can usually be mitigated by carefully ordering operations
and/or the matrix elements. Even so, direct methods for sparse linear sys-
tems require a certain amount of sophistication and careful programming.
On the other hand, iterative methods start with some approximation, per-
haps random, to the solution of the linear system and refine it successively
until some “stopping criterion” is satisfied. Most iterative methods do not
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require the matrix to be explicitly defined; it often suffices to know the action
of the matrix (and perhaps its transpose) on arbitrary vectors. As a result,
fill does not occur and the data structures necessary to store and manipulate
the matrix elements can be quite simple. The general subject of iterative
methods is vast and in no sense will a survey be attempted. The aim of this
first chapter is simply to get the ball rolling and introduce a few classical
methods before diving into conjugate gradient. In addition, the classical it-
erative methods are mostly based on matrix “splitting” which plays a key
role in preconditioned conjugate gradient. This brief discussion is patterned
on Chapter 8 of [SB80] and Chapter 4 of [You71]. Young is the pioneer in
computational linear algebra and his book is the standard reference in the
field.

Let A be a nonsingular n x n matrix and x = A~'h be the exact solution of
the system
Ax = h. (10.1)

A general class of iterative methods is of the form
Xi+1 = @(Xi), 1= 0, 1, 2, ce (102)

where @ is called the iteration function. A necessary and sufficient condition
for (10.2) to converge is that the spectral radius' of ® be less than one. For
example, taking (10.1), introduce an arbitrary nonsingular matrix B via the
identity

Bx+ (A— B)x=h. (10.4)

Then, by making the ansatz
one has

Xi+1 = X — Bil(AXZ' - h) = (I - BilA)XZ' + Bilh. (106)

In order for this to work one must be able to solve (10.5). Further, the closer
B is to A, the smaller the moduli of the eigenvalues of I — B~'A will be,
and the more rapidly will (10.6) converge. Many of the common iterative
methods can be illustrated with the following splitting.

A=D—-F—-F (10.7)
IThe spectral radius of an operator is the least upper bound of its spectrum o:
p(®)= sup || (10.3)
AEa(®)
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where D = diag(A), —F is the lower triangular part of A and —F is the
upper triangular part of A. Now, using the abbreviations

L=D"'E, U=D'F, J=L+U, H=(I-L™U (10.8)

and assuming a;; # 0 Vi, one has

Algorithm 1 Jacobi’s Method
B =D, I-B1'A=J (10.9)

a;,;Tj6+1) + Z G kTk(i) = h,j j=12,....,n, 1=0,1,... (1010)
k#j

where the subscript in parentheses refers to the iteration number. Jacobi’s
method is also called the “total step method.” To get the “single step” or
Gauss-Seidel method choose B to be the lower triangular part of A including
the diagonal:

Algorithm 2 Gauss-Seidel Method
B=D-F, I-B'"A=(I-L)'U=H (10.11)
Z Q5 kT (i41) + Q3. 5(i+1) -+ Z A5 kL) = hj j = 1, 2, oy, 1= 0, 1, P
k<j k>j
(10.12)

More generally still, one may consider using a class of splitting matrices
B(w) depending on a parameter w, and choosing w in such a way as to make
the spectral radius of I — B !(w)A as small as possible. The “relaxation”
methods are based on the following choice for B:

Algorithm 3 Relaxation Methods
1
B(w)=—-D(I —wlL) (10.13)
w
B(w)xit1 = (B(w) — A)x; + h i=0,1,... (10.14)

For w > 1 this is called overrelaxation, while for w < 1 it is called underre-
laxation. For w =1 (10.14) reduces to Gauss-Seidel. The rate of convergence
of this method is determined by the spectral radius of

I-B ' wA=({I-wL)'[(1-w)+wU] (10.15)

The books by Young [You71] and Stoer & Bulirsch [SB80] have many conver-
gence results for relaxation methods. An important one, due to Ostrowski

and Reich is:
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Theorem 11 For positive definite matrices A
p(I — B '(w)A) < 1 V 0<w<2. (10.16)

In particular, the Gauss-Seidel method (w = 1) converges for positive definite
matrices.

For a proof of this result, see [SB80], pages 547-548. This result can be
considerably sharpened for what Young calls type-A matrices or the “consis-
tently ordered” matrices (see, for example, [You71], chapter 5).

10.2 Conjugate Gradient

Conjugate gradient is by far the most widely used iterative method for solving
large linear systems. In its simplest forms it is easy to program and use, yet
retains the flexibility to tackle some very demanding problems. Theoretically,
CG is a descendent of the method of steepest descent, which is where the
discussion begins. But first, a few definitions.

10.2.1 Inner Products

We will assume that vectors lie in finite dimensional Cartesian spaces such as
R™. An inner product is a scalar-valued function on R™ x R"™, whose values
are denoted by (x,y), which has the following properties:

positivity (x,x) > 0;(x,x) =0<x=0 (10.17)
symmetry (x,¥y) = (y,x) (10.18)
linearity (x,y +2z) = (x,y) + (%, 2) (10.19)
continuity (ax,y) = a(x,y). (10.20)

This definition applies to general linear spaces. A specific inner product for
Cartesian spaces is (x,y) =x' -y = 30", 2y

10.2.2 Quadratic Forms

A quadratic form on R" is defined by

F(x) = S (x, Ax) — (h,x) + ¢ (10.21)
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where A € R"™™ h,x € R"; and c is a constant. The quadratic form is
said to be symmetric, positive, or positive definite, according to whether the
matrix A has these properties. The gradient of a symmetric quadratic form

fis
f'(x) = Ax — h. (10.22)

This equation leads to the key observation: finding critical points of quadratic
forms (i.e., vectors x where f'(x) vanishes) is very closely related to solving
linear systems.

10.2.3 Quadratic Minimization

The fact that solutions of Ax = h can be maxima or saddle points compli-
cates things slightly. We will use the concept of positivity for a matrix. A
matrix A is said to be positive if (x, Ax) > 0 for all x. So one must make a
few assumptions which are clarified by the following lemma.

Lemma 2 Suppose that z is a solution of the system Az = h, A is positive
and symmetric, and f(x) is the quadratic form associated with A, then

fx)=f(z) + z((x—2), A(x — 2)). (10.23)

This means that z must be a minimum of the quadratic form since the second
term on the right is positive. Thus the value of f at an arbitrary point x

must be greater than its value at z. To prove this, let x = z + p where
Az = h. Then

f(x) = fz+p)=3((z+D) Az +p) — (b (z+D)) +c
= J(0) + 1{(z. AD) + (B, A7) + (p, AD)} ~ (b, ).
If A is symmetric, the first two terms in brackets are equal, hence:
f(x) = () + 5(p, AD) + (47, ) — (h, p).
But by assumption Az = h, so that
F(x) = f(2) + 5(0. AD) = F(2) + 5 ((x —2), Alx — 7))

which completes the proof.
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As a corollary one observes that if A is positive definite as well as symmetric,
then z is the unique minimum of f(z) since in that case the term ((x —
z), A(x — z)) is equal to zero if and only if x = z. It will be assumed, unless
otherwise stated, that the matrices are symmetric and positive definite.

The level surfaces of a positive definite quadratic form (i.e, the locus of
points for which f(x) is constant) is an ellipsoid centered about the global
minimum. And the semiaxes of this ellipsoid are related to the eigenvalues
of the defining matrix.

The negative gradient of any function points in the direction of steepest
descent of the function. Calling this direction r one has

r=—f'(x) =h - Ax = A(z — x) (10.24)
since Az = h. The idea behind the method of steepest descents is to repeat-

edly minimize f along lines defined by the residual vector. A prescription for
this is given by the following lemma.

Lemma 3 For some choice of constant o
f(x) = f(x+ 2ar) (10.25)
f(x+ar)— f(x)<0 (10.26)

where r is the residual vector and x s arbitrary.

In other words, there exists a constant « such that by moving by an amount
2« along the residual, one ends up on the other side of the ellipsoid f(x) =
constant. And further, if one moves to the midpoint of this line, one is
assured of being closer to (or at the very least, not farther away from) the
global minimum. The proof of this assertion is by construction. From the
definition of f one has for arbitrary x, «

f(x+20r) = %((x+ 2ar), A(x + 2ar)) — (b, (x + 2ar)) + ¢

= f(x)+ %{(20&, Ax) + (2ar, A2ar) + (x, A2ar)} — (h, 2ar)
= f(x)+2a(r, Ax) + 20°(r, Ar) — 2a(h, 1)
f(x) — 2a(r,r) + 2% (r, Ar)

using Ax =h —r.

Therefore, choosing « to be (r,r)/(r, Ar) implies that f(x + 2ar) = f(x).
Repeating the argument for f(x + ar) with the same choice of «, one sees
immediately that

o+ an) = 6 - 3 0 <
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which completes the proof.

This lemma provides all that is necessary to construct a globally convergent
gradient algorithm for finding the solutions of symmetric, positive definite lin-
ear systems, or equivalently, finding the minima of positive definite quadratic
forms.

Algorithm 4 Method of Steepest Descent Choose xy. This gives ry =
h — Axy. Then for k=1,2,3,...

O = (I‘k—l, rk—l)/(rk—la Ark—l):
X = Xp—1 + QpTr_1 (1027)
Ty = h — AXk

Since it has already been shown that f(x + ar) < f(x) for any x, it follows
that

Flxo) > f(x1) > ... > F(xp) ... (10.28)

is a monotone sequence which is bounded below by the unique minimum f(z).
That such a sequence must converge is intuitively clear and indeed follows
from the Monotone Convergence Theorem. The proof of this theorem relies
on a surprisingly deep property of real numbers: any nonempty set of real
numbers which has a lower bound, has a greatest lower bound (called the
infinum). Having thus established the convergence of f(xy) to f(z), the
convergence of x; to z follows from Lemma 2 and the properties of inner
products:

F(z) — F(xg) = —%(xk 2 A(xe—12) >0 xe—7—0  (10.29)

since A is positive definite.

There is a drawback to steepest descent, which occurs when the ratio of the
largest to the smallest eigenvalue (the condition number k) is very large; the
following result quantifies ill-conditioning for quadratic minimization prob-
lems.

Theorem 12 Let \,0 and A, be the largest and smallest eigenvalues of
the symmetric positive definite matriz A. Let z be the minimum of f(x) and
r the residual associated with an arbitrary x. Then

20— s < IEL (10.0)

where || x ||>= (x,x) is the Euclidean norm.
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If all the eigenvalues of A were the same, then the level surfaces of f would
be spheres, and the steepest descent direction would point towards the center
of the sphere for any initial vector x. Similarly, if there are clusters of nearly
equal eigenvalues, then steepest descent will project out the spherical portion
of the level surfaces associated with those eigenvalues nearly simultaneously.
But if there are eigenvalues of very different magnitude then the portions
of the level surfaces associated with them will be long thin ellipsoids. As
a result, the steepest descent direction will not point towards the quadratic
minimum. Depending upon the distribution of eigenvalues, steepest descent
has a tendency to wander back and forth across the valleys, with the residual
changing very little from iteration to iteration.

The proof of this result is as follows. Let x = z 4+ p where x is arbitrary.
From Lemma 2,

f(x) — £(2) = 5(p, 4p)

Now, p = —A~!r, so that

S(47'r,1) = 2 (9, Ap)

Symmetric, positive definite matrices can be diagonalized by orthogonal ma-
trices: A = RDRY, A~! = RD™'R”, where D is the diagonal matrix of the
eigenvalues of A and R is orthogonal. Using the diagonalization of A,

1 1

—(p, Ap) = =(D!
where y = RTr. This last inner product can be written explicitly as

Lo IS~y o102
5(D %w=52&yi
=1

where ); is the i-th eigenvalue of A. Next, we have the bounds

n
>y

min ;—1

Loy e by
2)\mawi:1yi S 24 i Yi = 93

Since the vector y is related to the residual r by rotation, they must have
the same length (|| y ||°=|| Rr ||*= (Rr, Rr) = (r, R"Rr) = (r,r) =|| ¢ ||* .)
Recalling that

f(<) = () = 50, 4p) = 5 (D"'y,y)

one has

I

I [7< f(x) = f(z) <

= 2\nin
@

2)‘maw



10.2 Conjugate Gradient 129

Figure 10.1: Contours of the quadratic form associated with the linear system
Ax = h where A = diag(10,1) and h = (1,—1). Superposed on top of the
contours are the solution vectors for the first few iterations.

which completes the proof.

We can get a complete picture of what’s really happening in this method by
considering a simple example. Suppose we wish to solve

Ax=h (10.31)

where A = diag(10,1) and h = (1,—1). If we start the steepest descent
iterations with xq = (0,0) then the first few residuals vectors are: (1,—1) ,
(—9/11,-9/11), (81/121,81/121) and so on. In general the even residuals
are proportional to (1,—1) and the odd ones are proportional to (—1,—1).
The coefficients are (9/11)", so the norm of the residual vector at the i-th
step is r; = v/2(9/11)". If the matrix were A = diag(100,1) instead, the
norm of the i-th residual would be r; = /2(99/101)%: steepest descent would
be very slow to converge.

This can be seen graphically from a plot of the solution vector as a function
of iteration superposed onto a contour plot of the quadratic form associated
with the matrix A, shown in Figure (10.1).

It is not a coincidence that the residuals at each step of steepest descent are
orthogonal to the residuals before and after. We can prove this generally:

= h- A(Xk_l + akrk_l) (1033)
= Tp_1 — OjkAI'kfl. (1034)
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Therefore,

(I‘k—l, rk:—l)

(I‘k, rk—l) = (rk_l,rk_l) — (I'k_l Ark_l) (I‘k_l, Ark_l) =0 (1035)

So the residuals are pairwise orthogonal. The question naturally arises, is
convergence always asymptotic? Is there ever a situation in which SD termi-
nates in exact arithmetic? Using the above expression

Ty =Tp_1 — OékAI'k_l (1036)

we see that r, = 0 if and only if r,_; = azAr,_;. But this just means
that the residual at the previous step must be an eigenvector of the matrix
A. We know that the eigenvectors of any symmetric matrix are mutually
orthogonal, so this means that unless we start the steepest descent iteration
on one of the principle axes of the quadratic form, convergence is not exact.
But if we do start out on one the the principle axes, then convergence occurs
in 1 iteration.

10.2.4 Computer Exercise: Steepest Descent

Write a Mathematica program implementing SD for symmetric, positive def-
inite matrices. Consider the following matrix, right-hand side, and initial
approximation:

A = {{10,0},{0,1};
h = {1,-1};
x = {0,0}];

As given, Mathematica will do the problem in exact arithmetic. To switch
to floating point arithmetic, use 10. instead of 10 in the specification of the
matrix.

Figure out geometrically what steepest descent is doing. Does SD ever con-
verge in finitely many steeps on this problem in exact arithmetic? In this
case you should be able to derive an analytic expression for the residual vec-
tor. Make plots showing the level curves of the quadratic form associated
with A. Then plot the solution vector as a function of iteration. The changes
should always be normal to the contours. Under what circumstances can the

residual vector be exactly zero? What is the geometrical interpretation of
this?

Do your conclusions generalize to symmetric non-diagonal matrices?

What happens if you change the matrix from diag(10,1) to diag(100,1)?

@



10.2 Conjugate Gradient 131

10.2.5 The Method of Conjugate Directions

The problem with steepest descent (SD) is that for ill-conditioned matrices
the residual vector doesn’t change much from iteration to iteration. A simple
scheme for improving its performance goes back to Fox, Husky, and Wilkin-
son [FHW49| and is called the conjugate direction (CD) method. Instead
of minimizing along the residual vector, as in SD, minimize along “search
vectors” py which are assumed (for now) to be orthogonal with respect to
the underlying matrix. This orthogonality will guarantee convergence to the
solution in at most n steps, where n is the order of the matrix.

So replace the step

Xp = Xg—1 + OTp—1
with

Xk = Xg—1 T OPr—1

where p is to be defined. As in SD the idea is to minimize f along these
lines. The scale factors «, as in SD, are determined by the minimization.
Using the proof of Lemma 2,

1
fxe+apr) = fxi) + 5 (apr, Aapr) — (P, 1x) (10.37)
1
= flxx)+ 5042(1%,141%) — a(pk, Tk)
Setting w = 0 gives

, T Iy, T
0= oy = (Pk k) _ (k k)

(Pr, APr)  (Pk, APk)

The last expression for « is part of Lemma 4

So, provided the scale factors oy, satisfy the last equation, one is guaranteed
to minimize the residual along the search vector p,. The conditions necessary
for the search vectors are given by the following theorem.

Theorem 13 Conjugate Direction Theorem Suppose that the search
vectors are chosen such that (p;, Apj) = 0 if ¢ # j (A-orthogonality), then
the CD method converges to the exact solution in at most n steps.

Proof. Using the CD iteration

Xp = Xk-1 + Pk-1, k=1,2,...
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one has by induction
Xp — Xg = Q1Po + oP1 + -+ O Pr—1
for any xy chosen. Since the p vectors are A-orthogonal, it follows that

(Pk, A(xx — x¢)) = 0.

The A-orthogonality also implies that the p vectors must be linearly inde-
pendent. Thus any vector in R™ can be represented as an expansion in the
{px}?—5. In particular, the unknown solution z of the linear system can be
written

Z="Y%Po+ "+ Vn-1Pn-1-

Taking the inner product of this equation with first A and then p, and using
the A-orthogonality gives

(piv AZ)

(pi; Az) = %i(Pi, APi) = i or. Ap1)”

The idea of the proof is to show that these numbers are precisely the co-
efficients of the CD algorithm; that would automatically yield convergence
since by proceeding with C'D we would construct this expansion of the solu-
tion. Just as an arbitrary vector x can be expanded in terms of the linearly
independent search vectors, so can z — xy where X is still the initial approx-
imation. Thus,

-1 -1
— (Pi; A(z — x0)) K
Z— Xy = E pi = E &ipi 10.38

° i=0 (pia Api) i=0 ( )

where

(pi, A(z — x0))
(Pz‘, Apz‘) .

It was shown above that (py, A(xx — Xg)) = 0. Therefore one can subtract

Pk, A(xx — %0))/ (Pks APk)

from the expression for & without changing it. Thus,

o~ PrAE—x) _ (prAG )
' (Pk, APk) (Pk, APk)
(Pr; Az — xz))
(Px, APk)
(Pk, k)

(pk: Apk:) .

@
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This is precisely the scale factor oy, used in the CD iterations, which completes
the proof.

The A-orthogonality can be seen to arise geometrically from the fact that
the vector which points from the current location x to the global minimum
of the quadratic form z must be A-orthogonal to the tangent plane of the
quadratic form. To see this observe that since since the the residual r must
be normal to the surface, a tangent t must satisfy (t,r) = 0. Therefore
0= (t,Ax —h) = (t, Ax — Az) = (t, Ap), where p = x — z.

So far, all this shows is that if n vectors, orthogonal with respect to the
matrix A can be found, then the conjugate direction algorithm will give
solutions to the linear systems of the matrix. One can imagine applying
a generalized form of Gram-Schmidt orthogonalization to an arbitrary set
of linearly independent vectors. In fact Hestenes and Stiefel [HS52] show
that A-orthogonalizing the n unit vectors in R"™ and using them in CD
leads essentially to Gaussian elimination. But this is no real solution since
Gram-Schmidt requires O(n?) operations, and the search vectors, which will
generally be dense even when the matrix is sparse, must be stored. The
real advance to CD was made by Hestenes and Stiefel, who showed that A-
orthogonal search vectors could be computed on the fly. This is the conjugate
gradient method.

10.2.6 The Method of Conjugate Gradients

Using the machinery that has been developed, it is a relatively easy task
to describe the conjugate gradient (CG) algorithm as originally proposed by
Hestenes and Stiefel [HS52].2 In going from steepest descent to conjugate
directions, minimization along the residuals was replaced by minimization
along the search vectors. So it makes sense to consider computing the search
vectors iteratively from residuals. Suppose we make the ansatz po = ro and

Pk+1 = Tkt+1 + Bk+1Pk- (10.40)

Can the coefficients 8 be chosen so as to guarantee the A-orthogonality of
the p vectors? Using (10.40), one has

(Pk, APk+1) = (Pks ATiy1) + Brt1(Pr, APk). (10.41)
If one chooses
Bosy = — (P, Argi1)
* (pka Apk)

2The method was invented independently by M. Hestenes [Hes51] and E. Stiefel [Sti52],
who later collaborated on the famous paper of 1952.
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then the A-orthogonality is guaranteed. In Lemma 4 it will be shown that

(I’k+1, Aplc) _ (I'k+1, l‘k+1)
(P, APk) (rg, 1)

Bri1 = —

As a final touch, notice that the residuals can be calculated recursively; by
induction

rin = h—Axiy
= h— A(x; + 2iy1ps)
= (h — AXZ) — ai+1APi

= 1; — a1 Ap;

The result of all this work is:

Algorithm 5 Method of Conjugate Gradients Choose xy. Put pg =
rg =h — Axy. Then for1=0,1,2,...
_ _(ri,rq)
i+l = (p;,Ap;)
Xit1 = X; + ®i1Pi

riy1.=1; — a’z’—|—1Apz' (1042)
Bit1 = —(”&Z:ZTO

Pit1 = Tiy1 + Biy1Pi

The « coefficients are the same as in the CD algorithm. Whereas the (8
coefficients arise from the CG ansatz: py = ro, Px+1 = Tk+1+ Bk+1Pk- From a
computational point of view, note the simplicity of the algorithm. It involves
nothing more than:

e The inner product of a matrix and a vector; and only one per iteration
since Ap; can be calculated once and stored.
e The inner product of two vectors.
e The sum of a vector and a scalar times a vector.
Since most of the calculation in CG will be taken up by the matrix-vector
products, it is ideally suited for use on sparse matrices. Whereas a dense
matrix-vector inner product takes O(n?) floating point operations, if the

matrix is sparse, this can be reduced to O(nzero), where nzero is the number
of nonzero matrix elements.

To close this section a number of related details for the CD and C'G algorithms

will be shown.
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Lemma 4

(ri,pj)) = 0 for0<j<i<n (10.43)
(I‘i, pz) = (I‘i, I‘i) fOTi <n (1044)
(rj,r;) = 0 for0<i<j<mn (10.45)
_ (rk+1’ Apk) — (rk+1’ rk"‘l) (1046)

(Pk, AP/c) (I‘k, I'k)

(Pk, I’k) (I‘k, I‘k)
= 10.47
(Pk, APk) (Pk, APk) ( )

Proof. (10.43), (10.44), and (10.45) are be by induction on n. (10.46) and
(10.47) then follow immediately from this. Details are left as an exercise.
Equation (10.44) arises interestingly if we ask under what circumstances the
conjugate gradient residual is exactly zero. It can be shown that r;;; = 0 if
and only if (r;, p;) = (r;, 15).

As a final consideration, notice that although the gradient algorithms guar-
antee that the error || z — xj, || is reduced at each iteration, it is not the
case that the residual || h — Axy || is also reduced. Of course, the overall
trend is for the residual to be reduced, but from step to step, relatively large
fluctuations may be observed. There are several generalizations of the basic
Hestenes-Stiefel CG algorithm, known as residual reducing methods, which
are guaranteed to reduce the residual at each step. For more details see Paige
and Saunders [PS82] and Chandra [ChaT78|.

10.2.7 Finite Precision Arithmetic

The exact convergence implied by the Conjugate Direction Theorem is never
achieved in practice with C'G since the search vectors are computed recur-
sively and tend to loose their A-orthogonality with time. CD methods were
originally conceived as being “direct” in the sense of yielding the “exact”
solution after a finite sequence of steps, the number of which was known in
advance. It soon became apparent that C'G could be used as an iterative
method. One can show that [Cha78]:

2k
1—+/k
I sl x = (1557) (10.48)

where K = Apag/Amin is the condition number of the matrix and || x |[4=
(x, Ax). If the condition number is very nearly one, then (1—+/k)/(1++/k)
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is very small and the iteration converges rapidly. On the other hand if x = 103
it may take several hundred iterations to get a single digit’s improvement in
the solution. But (10.48) is only an upper bound and probably rather pes-
simistic unless the eigenvalues of the matrix are well separated. For some
problems, a comparatively small number of iterations will yield acceptable
accuracy. And in any event, the convergence can be accelerated by a tech-
nique known as preconditioning.

The idea behind preconditioning is to solve a related problem having a much
smaller condition number, and then transform the solution of the related
problem into the one you want. If one is solving Ax = h, then write this
instead as

Ax = h (10.49)
AC'Cx = h
Ax' = h

where A’ = AC~! and Cx = x'. To be useful, it is necessary that

e k(A < Kk(A)
e ('x = h should be easily solvable.
Since then, CG will converge much more rapidly to a solution of A’x" = h

than of Ax = h and one will be able to recover x by inverting Cx = x'.
Alternatively, one could write the preconditioned equations as

Ax = h (10.50)
DAx = Dh
Ax = K

where DA = A’ and Dh = h'.

The most effective preconditioner would be the inverse of the original ma-
trix, since then C'G would converge in a single step. At the other extreme,
the simplest preconditioner from a computational standpoint would be a di-
agonal matrix; whether any useful preconditioning can be obtained from so
simple a matrix is another matter. Between these two extremes lies a vast
array of possible methods many of which are based upon an approximate
factorization of the matrix. For example one could imagine doing a Cholesky
decomposition of the matrix and simply throwing away any nonzero elements
which appear where the original matrix had a zero. In other words, one could
enforce the sparsity pattern of A on its approximate factorization. For de-
tails on these “incomplete factorization” methods see [Man80],[Ker78|, and
[GvL83], for example.
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10.2.8 CG Methods for Least-Squares

Conjugate gradient can be extended to the least squares solution of arbitrary
linear systems. Solutions of the normal equations

ATAx = ATh (10.51)
are critical points of the function
| Ax — h ||*>= ((A4x — h), (Ax — h)). (10.52)

Note that AT A is always symmetric and nonnegative. The basic facts for
least-squares solutions are these: if the system Ax = h is overdetermined,
i.e., if there are more rows than columns, and if the columns are linearly
independent, then there is a unique least-squares solution. On the other
hand, if the system is underdetermined or if some of the columns are linearly
dependent then the least-squares solutions are not unique. (For a complete
discussion see the book by Campbell and Meyer [CM79].) In the latter case,
the solution to which C'G converges will depend on the initial approximation.
Hestenes [Hes75] shows that if xo = 0, the usual case, then C'G converges to
the least-squares solution of smallest Euclidean norm.

In applying CG to the normal equations avoid explicitly forming the products
AT A. This is because the matrix AT A is usually dense even when A is sparse.
But CG does not actually require the matrix, only the action of the matrix
on arbitrary vectors. So one could imagine doing the matrix-vector vector
multiplies AT Ax by first doing Ax and then dotting A into the resulting
vector. Unfortunately, since the condition number of AT A is the square of
the condition number of A, this results in slowly convergent iteration if x(A)
is reasonably large. The solution to this problem is contained, once again,
in Hestenes’ and Stiefel’s original paper [HS52]. The idea is to apply CG
to the normal equations, but to factor terms of the form A”h — AT Ax into
AT(h — Ax), doing the subtraction before the final matrix multiplication.
The result is

Algorithm 6 Conjugate Gradient Least Squares (CGLS) Choose xg.
Put So = h — AXO,I'O = Po = AT(h — AX()) = ATSO,qO = Ap() Then fOT'
i=0,1,2,...

o= (rori)
Qi+l = {q5,a:)

Xit1 = X + Q11P4
Si+1 = 8 — O4+19;
AT
r,1= A Si+1 (1053)
Biy1 = (rit1,rit1)
+1 —

(rs,rs)
Pit+1 = Tiy1 + Biv1Pi
qQit+1 = Apz'—H

@



138 Iterative Linear Solvers

[Cha78| shows that factoring the matrix multiplications in this way results
in improved rounding behavior.

For a more detailed discussion of the applications of CGLS see [HS52],
[Laub9], [Hes75], [Law73], and [Bjo75]. Paige and Saunders [PS82] present a
variant of CGLS called LSQR which is very popular since it is freely available
through the Transactions on Mathematical Software. [PS82] also has a very
useful discussion of stopping criteria for least squares problems. Our experi-
ence is that CGLS performs just as well as LSQR and since the CG code is
so easy to write, it makes sense to do this in order to easily take advantage
of the kinds of weighting and regularization schemes that will be discussed
in the next chapter.

10.2.9 Computer Exercise: Conjugate Gradient

Write a Mathematica program implementing CG for symmetric, positive
definite matrices. Consider the following matrix, right-hand side, and initial
approximation:

3

Table[1/(i+j-1),{i,n},{j,n}];
Table[1,{i,nx}];
Table[0,{i,nx}];

nm un o

M B =B

To switch to floating point arithmetic, use ¢ + j — 1. instead of 1 + j — 1 in
the specification of the matrix.

The first step is to familiarize yourself with CG and make sure your code is
working. First try n =4 or n = 5. On the NeXT, floating point arithmetic
works nearly perfectly in the sense that you get the right answer in n iter-
ations. Now go to n = 6. You should begin to see significant discrepancies
between the exact and floating point answers if you use only n iterations. On
other machines, these particular values of n may be different, but the trend
will always be the same.

Try to assess what’s going on here in terms of the numerical loss of A-
orthogonality of the search vectors. You’ll need to do more than look at
adjacent search vectors. You might try comparing py with all subsequent
search vectors.

Now see if you can fix this problem simply by doing more iterations. If
you get the right answer ultimately, why? What are the search vectors doing
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during these extra iterations. This is a subtle problem. Don’t be discouraged
if you have trouble coming up with a compelling answer.

Are the residuals monotonically decreasing? Should they be?

What’s the condition number of the matrix for n = 67

10.3 Practical Implementation

10.3.1 Sparse Matrix Data Structures

Clearly one needs to store all of the nonzero elements of the sparse matrix
and enough additional information to be able to unambiguously reconstruct
the matrix. But these two principles leave wide latitude for data structures.?
It would seem that the more sophisticated a data structure, and hence the
more compact its representation of the matrix, the more difficult are the
matrix operations. Probably the simplest scheme is to store the row and
column indices in separate integer arrays. Calling the three arrays elem (a
real array containing the nonzero elements of A), irow and icol, one has

elem(i) = A(irow(1), icol(i)) i=1,2,...,NZ (10.54)

where NZ is the number of nonzero elements in the matrix. Thus if the
matrix is

1 0 0 4
3 =2 0 0
0 0 -10

then elem = (1,4,3,—-2,—1), irow = (1,1,2,2,3), and icol = (1,4,1,2,3).
The storage requirement for this scheme is nzero real words plus 2 x nzero
integer words. But clearly there is redundant information in this scheme.
For example, instead of storing all of the row indices one could simply store
a pointer to the beginning of each new row within elem. Then irow would be
(1,3,5,6). The 6 is necessary so that one knows how many nonzero elements
there are in the last row of A. The storage requirement for this scheme
(probably the most common in use) is nzero real words plus nzero + nrow
integer words, where nrow is the number of rows in A. In the first scheme,
call it the full index scheme, algorithms for matrix vector inner products are
very simple. First, y = Ax:

Vk y(irow(k)) = y(irow(k)) + elem(k) x x(icol(k)). (10.55)

3A well-written and thorough introduction to sparse matrix methods is contained in
Serge Pissanetsky’s book Sparse Matriz Technology [Pis84].
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And for y = ATx:

VEk y(icol(k)) = y(icol(k)) + elem(k) * x(irow(k)). (10.56)

It is left as an exercise to construct similar operation within the row-pointer
scheme. The matrix-vector inner product in the row-pointer scheme amounts
to taking the inner product of each sparse row of the matrix with the vector
and adding them up. If the rows are long enough, this way of doing things
amounts to a substantial savings on a vectorizing computer since each row-
vector inner product vectorizes with gather-scatter operations. At the same
time, the long vector length would imply a substantial memory economy
in this scheme. On the other hand, if the calculation is done on a scalar
computer, and if memory limitations are not an issue, the full-index scheme
is very efficient in execution since partial sums of the individual row-vector
inner products are accumulated simultaneously. For the same reason, a loop
involving the result vector will be recursive and hence not easily vectorized.

10.3.2 Data and Parameter Weighting

For inverse problems one is usually interested in weighted calculations: weights
on data both to penalize(reward) bad(good) data and to effect a dimension-
less stopping criterion such as x?, and weights on parameters to take into
account prior information on model space. If the weights are diagonal, they
can be incorporated into the matrix—vector multiply routines via:

Vk y(icol(k)) = y(icol(k))+elem(k)*x(irow(k))*W1(irow(k)) (10.57)
for row or data weighting and
vk y(irow(k)) = y(irow(k))+elem(k)*x(icol (k))*W2(icol(k)) (10.58)

for column or parameter weighting. Here, W1 and W2 are assumed to contain
the diagonal elements of the weighting matrices.

10.3.3 Regularization

Just as most real inverse calculations involve weights, most real inverse cal-
culations must be regularized somehow. This is because inverse calculations
are generally ill-posed and, as a result, the finite dimensional linear systems
that are used to approximate them are singular, or effectively so on a com-
puter. The most widely used kinds of regularization fit into the following
framework. Assuming that one is solving a linear inverse problem or one
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that has been reduced to linearity via a gradient descent algorithm such as
Newton’s method, replace the minimization problem

min || Ax —h ||? (10.59)

with
min || Ax —h ||> +) || Rx ||? (10.60)
where R = 0",n = 0,1,2,... and 0" is an n — th order discrete difference

operator. The “normal equations” associated with this generalized objective
function, obtained by setting the derivative of (10.60) equal to zero, are

(ATA+ AR"R)x = A"h, (10.61)

So for n = 0 this is just conventional damping. For n > 0 the additional term
in the objective function penalizes roughness in the solution. This sort of
regularization is straightforward to implement in a sparse matrix framework
by augmenting the matrix with the regularization term:

i=( )

The augmented right hand side is

Since ATy = ATy and ATA = AT A + ARTR, the least squares solutions of
Ax = ¥ satisfy

(ATA+ AR"R)x = Ah.
So to incorporate any regularization of the form of (10.60) all one has to do
is augment the sparse matrix. Most commonly this means either damping,
in which case R is diagonal, or second-difference smoothing, in which case R
is tridiagonal.

And just to confuse the issue a bit more, (10.60) is not very good notation.
One shouldn’t try to make

| Ax =D [ +2 || Rx ||*

or
| Ax —h |*

as small as possible, since the data are contaminated by noise. What one is
really after is some target error reduction subject to constraints, including
regularization. So it would be better to write the optimization problem as

min || Rx || (10.62)
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subject to (amongst other constraints)

X2 = X?arget (1063)

where X7, 15 @ “target” value of

z": (data — data ) (10.64)

1
TL i=1 Oi

and n is the number of independent observations. If the data are associated
with independent, normally distributed random variables, with standard de-
viations o;, then x3,,; = 1 says to stop when the data have been fit to
within one standard deviation, on average. The point is that if the data are
contaminated with noise, even if one had n observations and n unknowns
and the matrix were full-rank, it wouldn’t make sense to say the solution of
the inverse problem was given by the inverse of the matrix applied to the
data, since that would result in a model which was statistically very unlikely
to be the true model. On the other hand, the most likely value of x? for an
experiment involving the true model is one.

10.3.4 Jumping Versus Creeping*

The pseudo-inverse A' itself has something of a smoothness condition built
in. If the matrix A has full column rank and the number of rows is greater
than or equal to the number of columns (in which case the system is said to be
overdetermined) then the least squares solution is unique. But if the system
is underdetermined, the least squares solution is not unique since A has a
nontrivial null space. All of the least squares solutions differ only by elements
of the null space of A. Of all of these, the pseudo-inverse solution is the one
of smallest norm. That is, || x' ||<|| x || for every x such that AT Ax =
ATy [CM79]. This means, for example, that in a nonlinear least squares
problem, the step size will be minimized if the pseudo-inverse is used and if
the inversion is done in terms of perturbations from an initial guess. This
has led to the term “creeping” being used for this sort of inversion. On the
other hand, if at each Gauss-Newton step one solves for the unknown model
directly, then using the pseudo-inverse will give the model of smallest norm.
This is called “jumping” since the size of the change in the solution between
Gauss-Newton iterations is not constrained to be small. This point merits
a brief digression since the effects of damping or smoothing will be different
according as one is doing jumping or creeping. Suppose the nonlinear inverse
problem is: given y, find x such that y — F'(x) is minimized in some sense.

4This section and the next are taken from [SDG90].
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Expanding the forward problem F' to first order in a Taylor series about some
model x, gives
y = yo + F'(x0)(x — %) (10.65)

where yg = F(X¢). Denoting the Jacobian F’ by A, there are two alternative
least squares solutions of the linearized equations
Jumping x/ = Al(Ax, +y — yo) (10.66)
Creeping x° =xy+ Af(y — yy) (10.67)
differing only in how the pseudo-inverse is applied.
In creeping x — Xy is a minimum norm least squares solution of the linearized
forward equations, whereas in jumping the updated model x is itself a min-

imum norm least squares solution. The difference between the jumping and
creeping (in the absence of regularization) is readily seen to be

x) —x¢ = (ATA — I)x. (10.68)

Expressing the initial model in terms of its components in the row space and
null space of A,

Xo = X5 + xp*" (10.69)
and noting that
x7 = AT Ax (10.70)
then '
x! = x5 + Al(y — yo) (10.71)
and (10.68) becomes .
x! — x¢ = —xpui, (10.72)

Thus, the creeping and jumping solutions differ by the component of the
initial model that lies in the null space of A: some remnants of the initial
model that appear in x¢ are not present in x7. Only if A is of full column
rank (giving ATA = I ) will the two solutions be the same for any initial
guess. In the next sections it will be seen that this analysis must be modified
when regularization is employed.

10.3.5 How Smoothing Affects Jumping and Creeping

In the absence of regularization, the jumping and creeping solutions differ
only by the component of the initial model in the null space of the Jacobian
matrix. Regularization changes things somewhat since the matrix associated
with the regularized forward problem has no nontrivial null space. Recall
that for jumping, the linearized problem, with solution x7, is

AX) = Axg+y — o (10.73)
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whereas for creeping

A(x° —x9) =y — Yo- (10.74)
The addition of regularization produces the augmented systems
Axd = ( y- y°0+ Axq ) (10.75)

and

A(x¢ = x0) = ( Y _Oy" ) . (10.76)

Inverting, one has

xj:AT(y_y°+AX° ) :AT<y_y°>+AT<AX°>. (10.77)

0 0 0
and
x¢ — x = At ( Y _Oyo ) . (10.78)
Thus
e _ i — gt [ A%o
x—x'=A 0 )~ Xo (10.79)

For A > 0 the augmented matrix is nonsingular, therefore one can write
Xg = ATAXO.

Using the definition of A

XOZAT<\/§R>XO:AT<A8‘°>+AT<\/X%XO). (10.80)

Finally from (10.79) and (10.80) one obtains

L 0
€ _ I — _ AT
x¢ —x A ( VAR ) . (10.81)

As in (10.72), the difference between the two solutions depends on the ini-
tial model. But when smoothing is applied, the creeping solution possesses
components related to the slope of xq (first difference smoothing) or to the
roughness of x¢ (second difference smoothing) which are not present in the
jumping solution. An important corollary of this result is that for smooth
initial models, jumping and creeping will give the same results when rough-
ness penalties are employed to regularize the calculation. Examples illus-
trating the comparative advantages of jumping and creeping are contained

in [SDG90].
@
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10.4 Iteratively Reweighted Least Squares’

When a traveler reaches a fork in the road, the #; norm tells him
to take either one way or the other, but the ¢, norm instructs
him to head off into the bushes. (Claerbout and Muir, 1973.)

Suppose we have collected some data that, on physical grounds, we believe
should lie along a straight line through the origin. Since these are experi-
mental data, there will be some scatter, so we have some flexibility in the
slope of the line we choose. The question is: what is the “best” fitting line
through these data? Nine times out of ten, we choose the least-squares line,
the one that minimizes the sum of the squared residuals (in this case let’s
say the vertical distance between the line and points).

This idea is illustrated in the top figure at left. But

now what happens if one of the data points is seri-
| ously out of kilter, as sketched in the middle figure.
The least-squares line will be dominated by this one
point. In fact, we can show that as this one point
goes to infinity, the least-squares line will try to fit
it alone, completely ignoring the other data. On the
other hand, suppose we define the “best” fitting line
as the one that minimizes the sum of the absolute val-
ues of the residuals, not the absolute value squared.
This little change makes all the difference, for now the
estimated line ignores this “outlier” point and gives
| a perfectly reasonable result based on the rest of the
data. This is illustrated in the bottom figure.

We can define a family of norms by

xlle, = > lzal” p>1.

When p = 2 we have the familiar least-squares. When p = 1 we have least-
absolute-value. To see why the straight line estimation problem is so different
in the two cases, consider an even simpler estimation problem. Let’s suppose
that we have n observations z, of some observable z. What is the value
of the observable that is most in accord witht the data? The least-squares
criterion is

d n
—N |z —z;>=0
dx;

SThis section is based upon [SG88] and [SGT88]
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which implies that
1 n
r = — sz
iz

Thus the least-squares estimator of =, say zy,, is given by the average of the
data. Now it is clear why a single outlier can skew the results: outliers are
averaged into the solution under the ¢ criterion. But what about the ¢; case;
why did it simply ignore the outlier? The least-absolute-value criterion is

d n
— Y |z — x| = 0.
dz =

Except at £ = 0 we have

d

%m = sgn(z).

Therefore the /; estimator must satisfy

n

> sgn(z —x;) = 0.

=1

In order for this to be true, it must be that z,, is the middle element of the
data set (assuming we have an odd number of data). In other words, z,, is
the median of the data. This shows that the least-absolute-value criterion
ignores the outlier, since an outlier can’t affect the midpoint of the set.

No doubt you all know that the method of least-squares goes back to Gauss.
In fact there is considerable controversy about this point since Gauss wasn’t
the first in print; perhaps that will be the subject of another digression. It
turns out that of all the ¢, estimation problems, only least-squares can be
solved by linear means. All the other problems are nonlinear. So it would
seem reasonable to suppose, least-squares being the simplest problem, that
it must have been the first £, estimator used-right? Well, actually, a genera-
tion before Gauss was flourishing, the ¢; criterion had been used to reconcile
geodetic measurements by the Croatian Jesuit Rudjer Bogkovié (anglicised
to Roger Boscovich). Boscovich was one of the most remarkable scientists
of the 18th century, making fundamental contributions to pure and applied
mathematics, physics, geophysics, astronomy, instrument design, as well as
classical scholarship. Unfortunately almost none of his work has been trans-
lated from Latin.® And since we don’t study important things like Greek
and Latin anymore, we’re losing a lot of our scientific heritage. To cite but
one example of Boscovich’s genius, he gave a qualitatively correct theory
of condensed matter by arguing that all phenomena arise from the spatial

6The exception being his masterpiece, the Theoria philosophiae naturalis, which was
published in the early part of this century in a dual-language edition affectionately (and
appropriately!) known as the tombstone folio.
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arrangement, and relative displacement of point particles, thus reducing the
three fundamental principles of Newton (gravitation, cohesion and fermen-
tation) to a single principle. In so doing, he gave a subtle (and substantially
correct) explanation of the impulsive collision of bodies by showing that the
velocities of bodies must change continuously via a force which acts at a
distance and that there is no actual contact. This problem had caused New-
ton a lot of difficulty and his explanation seems rather primative next to
Boscovich’s. There is a lengthy digression on Boscovich in the paper [SG88|
if you are interested.

The issue here is not so much the presence of outliers in the data, although
they are certainly a problem in seismic data, the real issue is the sensitivity
of a particular estimator to deviations from the underlying assumptions.
Least-squares is theoretically optimal” if the data are normally distributed.
The sensitivity of least-squares to departures from a normal distribution is
known in the statistical literature as a lack of robustness. The term robust
was coined in this context by G.P.E. Box in the 1950s. Least-absolute-values
can also be shown to be theoretically optimal for a particular distribution,
the so-called double exponential distribution. But it is far less sensitive to
departures from this distribution: ¢; is robust.

The question is, how do we implement robust methods such as #; in seismic
inversion? Many inverse problems can be reduced to repetitive solution of
large, linear systems of equations Ax = y, where y comes from the data,
X contains our model parameters and A is a matrix which comes from the
discretization of the forward problem. So we want to be able to treat the
general ¢, linear inversion problem:

min||Ax — y||gp.

We must differentiate this function with respect to x and set the result equal
to zero. Using the fact that sgn(a) = a/|a| we have

0
2 o

i

P

0

ST ——IrilP =3 sgn(ri)p i’ Ay =0
8xk -

7 7

= Zrip s |1072 Ak
i

= [ATR(A:L" - y)]k

Z Aijz; — yi

J

where the matrix R is defined to be diag|r;”2 and r = Ax — y is the
residual vector. The result of this calculation is a nonlinear generalization of
the normal equations familiar from least-squares

ATRAx = ATRy.

"Technically, minimum information content for a fixed £, norm estimator of dispersion.
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Nonlinear, that is, except for p = 2 in which case the weighting matrix R
reduces to the identity, i.e., least-squares.

For p # 2 this suggests a natural iterative scheme for the ¢, solution to a
linear system, namely

(A" Ry A) x) = A" Ry

where we start the method out with Ry equal to the identity matrix. In
this equation we have used subscripts in parentheses to refer to the iteration
index, not the components of any vector. This approach is called iteratively
reweighted least squares (IRLS) since at every step ¢ the residual r(;_;y and
hence the weighting matrix R(;_;) are known, which means each iteration
consists of solving a weighted least squares problem. Easy.

But there is a problem. To illustrate it consider the linear system

10 1
11 x|
2 1 y |
0 2

It was discovered by Gauss (and published in 1809 in his Theoria motus
corporium coelestium) that the £; solution of such a linear system must satisfy
one of the square subsystems exactly.® An example of a square subsystem in

this case would be
10 z | |1
11|yl 1]

That this is true, is really a deep adumbration of what we now call the
fundamental theorem of linear programming. In fact, the result was too
trivial for Gauss to even bother proving; one of those “it can easily be shown”
references. Gauss’ method is not practical for our problems since it becomes
combinatorically expensive. In the above example there are 6 2x2 systems.
But it does point the direction to modern linear programming methods such
as the simplex method, which is really just an efficient generalization of
Gauss’ method. In fact, this result may merit Gauss the title of inventor
of linear programming as well as, it seems, half of everything else we use
routinely today. For our purposes, however, it is sufficient to realize that
IRLS, at least the way we have described it, will be unstable since we will
inevitably be dividing by zero residuals as we approach the ¢; solution.

—_ = =

One way out of this difficulty is to truncate the small residuals. We define
the matrix

R, — |7.Z,|p—2 if |7‘i|>€
" =2 if |y <e

8See [BS83] for a proof.
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where € is a small positive parameter. This shouldn’t worry us too much,
since the truncation only affects the small residuals. Large residuals are
still down-weighted. Since all residuals below € are treated equally, this new
version of IRLS treats high-confidence (low-residual) observations just as
least-squares does. But residuals which are large compared to ¢ are down-
weighted as they must be if the method is going to be robust.

One theorem which is useful to keep in mind is that the ¢; problem is the only
¢, problem which is not uniquely soluble. The technical reason for this is the
loss of strict convexity of the norm. One can show that if x and y are two so-
lutions of the ¢; problem, then any convex combination of these two solutions
tx+(1—t)y for 0 < t < 1is also a solution. And by applying Gauss’ method
to the rectangular system above, you can readily verify that (1/4,1/2) and
(1/2,1/2) are both ¢; solutions. Hence («,1/2) for 1/4 < a < 1/2 is an infi-
nite family of ¢; solutions. Now classical methods of solution such as Gauss’
or simplex rely on finding solutions of these subsystems. Geometrically this
corresponds to locating a vertex of some convex polyhedron. We move from
vertex to vertex by sliding along the edge of the polyhedron. IRLS on the
other hand, is an example of an interior point method. It relys on approach-
ing an optimal solution from the interior of this polyhedron. Intuitively this
makes sense since we are computing derivatives and we know that the ob-
jective function won’t be differentiable at a vertex. Karmarkar’s algorithm
is a famous example of an interior point method. In fact, if you look in
Strang’s book Applied Mathematics, you will see a version of Karmarkar’s
method which is literally an iteratively reweighted least squares method, but
with different weights than the IRLS algorithm described here. For a nice
comparison of Strang’s algorithm and Karmarkar see [RO89].

In the paper [SGT88] there are lots of examples of the numerical application
of IRLS to highly ill-conditioned matrices of the type that arise in travel time
tomography. The benefits are clear, not only in the cases where we added
outliers to our synthetic data, but even when we added Gaussian noise! This
seems odd since we just said that ¢, was theoretically optimal with Gaussian
noise. True, but the fact is that the iterative reweighting has important
stabilizing properties when applied to these highly ill-conditioned systems.
How ill-conditioned? Well, in travel time tomography, the condition number
of the rectangular matrix is routinely 10° or so.

Finally, we come to the last and most important aspect of the numerical im-
plementation of IRLS that was discovered in practice. The theory says that at
each IRLS step we need to solve a weighted least-squares problem. We know
that limiting the number of iterations of Lanczos-type least-squares solvers
such as conjugate gradient was equivalent to regularizing the inversion, so we
can try computing only very approximate solutions of each weighted least-
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squares problem. Picture this: we have outer iterations over the re-weighting
steps, and we have inner iterations using conjugate gradient or whatever other
iterative linear solver we’re using to do the weighted least-squares problems.
Our approach is to not bother doing lots of inner iterations. We find that
we can get perfectly good £, solutions doing only a fraction of the iterations
one might naively expect would be necessary. In fact, we find that we can
get, the corresponding #; solution in almost the same amount of work as was
required to compute the least-squares solution, even though the latter is lin-
ear and the former is nonlinear. Turns out, we have rediscovered something
that had been known to the mathematicians since the early 1960s when Vic-
tor Pereyra and Gene Golub had published some papers on “approximate
inner iterations” for Newton’s method. IRLS is almost a Newton method for
the nonlinearly weighted normal equations. (It’s technically an example of a
secant method.)

The upshot of all of this is that a robust travel time inversion code we use
implements the following objective function:

min [[Az — yllg, + Aol Drzlle, + Aol Dozle, + - -

where we always choose p ~ 1, )\; are Lagrange multipliers, and the D; rep-
resent various regularization or covariance operators. ([SDG90] has some ad-
ditional examples of this approach.) For example, D = 1 just gives damping
or pre-whitening, while if we let D be a discrete second difference operator,
this approach gives us a smoothness constrained solution. In tomographic
applications we want to use different smoothness constraints for the verti-
cal and the horizontal velocity features and a third one for the reflecting
or refracting boundaries. This Tikhonov regularization, coupled with the
statistical robustness afforded by the ¢, norms, gives a highly reliable and
efficient solver: reliable in the sense that the solutions are physically realis-
tic and efficient in the sense that it’s not much more expensive than plain
least-squares.

10.5 Sparse Singular Value Calculations®

The singular value decomposition is one of the most useful items in the in-
verter’s toolkit. With the SVD one can compute the pseudo-inverse solution
of rectangular linear systems, analyze resolution (within the linear and Gaus-
sian assumptions), study the approximate null space of the forward problem,
and more. The now classical Golub-Reinsch approach to SVD [GR70] begins

@
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by reducing the matrix to block bidiagonal form via a sequence of House-
holder transformations. The Householder transformations annihilate matrix
elements below the diagonal, one column at a time. Unfortunately, after
each transformation has been applied, the sparsity pattern in the remaining
lower triangular part of the matrix is the union of the sparsity pattern of
the annihilated column and the rest of the matrix. After a very few steps,
one is working with nearly full intermediate matrices. This makes conven-
tional SVD unsuitable for large, sparse calculations. On the other hand, for
some problems, such as studying the approximate null space of the forward
problem, one doesn’t really need the entire SVD; it suffices to compute the
singular vectors associated with the small singular values (“small” here is
defined relative the level of noise in the data). Or perhaps from experience
one knows that one must iterate until all those eigenvectors down to a certain
eigenvalue level have been included in the solution. Conventional SVD gives
no choice in this matter, it’s all or nothing. In this section we shall consider
the use of iterative methods such as conjugate gradient for computing some
or all singular value/singular vector pairs.

10.5.1 The Symmetric Eigenvalue Problem

For convenience (actually, to be consistent with the notation in [Sca89]) here
is an equivalent form of the CG algorithm for spd systems Ax = y.

Algorithm 7 Method of Conjugate Gradients Let xo =0,rg =p;1 =y
and fy =0. Then fori=1,2,...

B = (ri—1,ri—1)

(ri—2,ri—2)
pi = I(‘i—1 + ﬂ)ipz'—1
_ \ri—1,rj—1
X = (5. Apy) (10.82)

X; = Xj—1 + ;Pj
r; =Ti—1 — & Ap;

Now define two matrices Ry and P, whose columns are, respectively, the
residual and search vectors at the k — th step of CG; Ry = (ro,...,rrx_1) and
P, = (p1,-..,Pk)- Let By be the bidiagonal matrix with ones on the main
diagonal and (—f;,7 = 2,...,k) on the superdiagonal (5; are the CG scale
factors). Finally, let Ay be the matrix diag(po, .. ., pk—1), where p; =|| r; ||

Using the recursion

Pit1 =T + Bit1Pi i1=2,...,k
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and the fact that p; = ry, it follows by direct matrix multiplication that
Rk = Pk-Bk

Therefore
R.'AR), = B," P,T AP, B,.

The reason for looking at, R,” ARy, is that since Ry, is orthogonal (cf. Lemma 4),
the matrix R’ AR), must have the same eigenvalues as A itself.

But since the p vectors are A-orthogonal, it follows that

Pk:TAPk: = dzag[(p1, Apl): SRR (pk7 Apk)]

Using this and normalizing the R matrix with A gives the following tridiag-
onalization of A

Ty = Ay~ By diag[(p1, Ap1), - - -, (Pk, APk)| BrAx ™ (10.83)

Carrying through the matrix multiplications gives the elements of 7}

1 B .
T).,. = |— =1,...,k 10.84
(Tk), [a{+aF1 i=1, ,] (10.84)
(Tk)iir = )iy = [_% v=1.. k- 1] (10.85)

In other words, just by doing C'G one gets a symmetric tridiagonalization of
the matrix for free. Needless to say, computing the eigenvalues of a symmetric
tridiagonal matrix is vastly simpler and less costly than extracting them from
the original matrix. For rectangular matrices, simply apply the least squares
form of CG and use the a and f scale factors in (10.84) and (10.85), to
get a symmetric tridiagonalization of the normal equations. Then, just take
their positive square roots to get the singular values. The calculation of the
eigenvalues of symmetric tridiagonal matrices is the subject of a rather large
literature. See [Sca89] for details.

The following example illustrates the idea of iterative eigenvalue computa-
tion. The matrix in question is an eighth-order Hilbert matrix:

nx =8;
A = Table[1/(i+j-1.),{i,nx},{j,nx}];

The condition number of this matrix is 10'°. The exact solution to the system
Ax =y, where y consists of all ones is:

(—8, 504, —7560, 46200, —138600, 216216, —168168, 51480).
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After just 5 iterations, using 16 digits of precision, CG produces the following
solution:

(0.68320, —4.01647, —127.890, 413.0889, —19.3687, —498.515, —360.440, 630.5659)

which doesn’t look very promising. However, even after only 5 iterations
we have excellent approximations to the first 4 eigenvalues. The progression
towards these eigenvalues is illustrated in the following table, which shows
the fractional error in each eigenvalue as a function of C'G iterations. Even
after only one iteration, we’ve already got the first eigenvalue to within 12%.
After 3 iterations, we have the first eigenvalue to within 1 part in a million
and the second eigenvalue to within less than 1%.

Eigenvalue 1.6959389 | 0.2981252 | 0.0262128 | 0.0014676 | 0.0000543 | Iteration
Fractional 0.122 1
error in 0.015 0.52720 2
CG-computed | 1.0 1073 0.006 1.284 3
eigenvalues | 9.01072 | 1.910°7 0.002 1.184 4
0.0 73107% | 1.1310°% | 8.010°* 1.157 5

10.5.2 Finite Precision Arithmetic

Using CG or Lanczos methods to compute the spectrum of a matrix, rather
than simply solving linear systems, gives a close look at the very peculiar
effects of rounding error on these algorithms. Intuitively one might think
that the main effects of finite precision arithmetic would be a general loss of
accuracy of the computed eigenvalues. This does not seem to be the case.
Instead, “spurious” eigenvalues are calculated. These spurious eigenvalues
fall into two categories. First, there are numerically multiple eigenvalues; in
other words duplicates appear in the list of computed eigenvalues. Secondly,
and to a much lesser extent, there are extra eigenvalues. The appearance of
spurious eigenvalues is associated with the loss of orthogonality of the CG
search vectors. A detailed explanation of this phenomenon, which was first
explained by Paige [Pai71] is beyond the scope of this discussion. For an
excellent review see ([CW85|, Chapter 4). In practice, the duplicate eigen-
values are not difficult to detect and remove. Various strategies have been
developed for identifying the extra eigenvalues. These rely either on changes
in the 7" matrix from iteration to iteration (in other words, on changes in
T,, as m increases), or differences in the spectra between T (at a given it-
eration) and the principal submatrix of T formed by deleting its first row
and column. An extensive discussion of the tests used for detecting spurious
eigenvalues is given by [CW85]. It is also not obvious how many iterations
of C'G are necessary to generate a given number of eigenvalues. At best
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it appears that for “large enough [number of iterations| m, every distinct
eigenvalue of A is an eigenvalue of T,,,”—the Lanczos phenomenon[CW80].
On the other hand, the spurious eigenvalues crop up because one has been
content to let the search vectors lose orthogonality: computing a lot of it-
erations, throwing away a lot of duplicate eigenvalues, and relying on the
Lanczos phenomenon to assure that eventually one will calculate all of the
relevant eigenvalues. The examples in [CW85] and the example that will
be shown presently would seem to indicate that that is not an unreasonable
goal. On the other hand, many (perhaps most) practitioners of the Lanczos
method advocate some sort of partial or selective reorthogonalization. In
other words, orthogonalize by hand the current search vector with respect
to the last, say, N vectors, which then must be stored. Some examples of
reorthogonalized Lanczos are given by [Par80]. It is difficult to do justice
to the controversy which surrounds this point; suffice it to say, whether one
uses reorthogonalized methods or not, care must be taken to insure, on the
one hand, that spurious eigenvalues are not mistakenly included, and on the
other, that reorthogonalization is sufficiently selective that the speed of the
method is not completely lost.

Here is a simple example of the use of CG-tridiagonalization from [Sca89).
The problem is a small, 1500 or so rays, travel time inversion of reflection
seismic data. The model has about 400 unknown elastic parameters. In
the table below are listed the first 40 singular values of the Jacobian matrix
computed with an SVD (on a Cray X-MP) and using Conjugate Gradient.
Duplicate singular values have been removed. The results are extremely close
except for the three spurious singular values 7, 24, and 38. In all I was able
to compute about half of the nonzero singular values without difficulty. Most
of these were accurate to at least 6 or 7 decimal places.
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SINGULAR VALUES

SVD

CG
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23.762031619755
19.768328927112
16.578534293957
14.354045541174
13.006121206565
12.293303623664
11.610930621056
10.895471779225
10.670981506845
10.334874696665
10.123412306695
9.955310042953

9.6454782226432
9.5529461513199
9.4273903010306
9.3371719187833
9.2486487219101
9.2020745407381
9.1365345361384
9.1105716770474
8.9573315416959
8.897862083302

8.6901794080491
8.6263321041541
8.3362097313284
8.253249495322

8.1701784446507
8.009740159019

7.9256810850057
7.8102692299697
7.6624515175111
7.5651235246644
7.348695068023

7.2070814800585
7.1082737154214
6.9528330413513
6.9267489577491
6.7567717799808
6.7316199620107
6.6700456432165

23.7620316197567050
19.7683289271078131
16.5785342939616456
14.3540455411735757
13.0061212065686460
12.2933036236672788
12.1592302767906455
11.6109306210545331
10.8954717792268974
10.6709815068454394
10.3348746966737313
10.1234123067005579
9.95531004295387922
9.64547822264931298
9.55294615132859115
9.42739030103272846
9.33717191878789610
9.24864872191587062
9.20207454074499109
9.13653453614481603
9.11057167705186344
8.95733154170239976
8.89786208330824335
8.86770907443914380
8.69017940805813782
8.62633210415555185
8.33620973133915943
8.25324949532812213
8.17017844465582410
8.00974015902995795
7.92568108500504187
7.81026922996'729356
7.66245151751159326
7.56512352466241511
7.34869506802239880
7.20708148005766369
7.10827371542024911
7.05394975396781465
6.95283304135091251
6.92674895774645272
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10.5.3 Explicit Calculation of the Pseudo-Inverse

Finally, we point out a clever result of Hestenes which seems to have been
largely ignored. In the paper [Hes75] he proves the following. Let r be the
rank of A an arbitrary matrix, and let p and q be the CGLS search vectors,
and let xqg = 0. Then

A = PoPo i P1P1 S Pr-1Pr—1 AT

(a0, @) (a1, 1) (@1, % 1) (10.86)

is the generalized pseudo-inverse of A. A generalized pseudo-inverse satisfies
only two of the four Penrose conditions, to wit:

ATAAT = AT (10.87)
AATA=A (10.88)
To illustrate this result, consider the following least squares problem:
1 2 )
-4 5 x| 6
-1 3 y | 5
2 =7 —12

The column rank of the matrix is 2. It is straightforward to show that

1[92 35
[474] :@[35 87]'

Therefore the pseudo-inverse is

_ 1 _ _
AT:[ATA} AT _ l157 173 18 71]‘

639 | 79 —30 31 —8&4

Now apply the CGLS algorithm. The relevant calculations are

230

[ -48 | 887

Po=1 139 |7 DT | 465

—1069
18.55343

_ 9.97601 _ —18.46049 __| 1.00000
Pr=1 498871 | ®T| 289012 |° *27 | 200000 |
—10.06985
which is the solution. Recalling (10.86)
At = l PoPo , PiP1 +w] AT (10.89)
(Clo, QO) (Qb Q1) (qr—la Qr—1)
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one has

PoPo i pip1 | | 0.12627 0.05080
(Q0,90)  (ai,q1) 0.05080 0.03193 |-

-1
But this is nothing more than [ATA] which was previously calculated:

[ATA]‘l—L 22 35] [0.12627 0.05080
~ 689 | 35 87| | 0.05080 0.03193 |-

In this particular case A'A = I so the parameters are perfectly well resolved
in the absence of noise.
Exercises

1. Prove Equation (10.22).

2. Show that .
f(z) — f(xx) = —§(Xk — 2z, A(xy — 2))

where z is a solution to Ax = h and A is a symmetric, positive definite
matrix.

3. Prove Lemma 4.

4. With steepest descent, we saw that in order for the residual vector to
be exactly zero, it was necessary for the initial approximation to the
solution to lie on one of the principle axes of the quadratic form. Show
that with CG, in order for the residual vector to be exactly zero we
require that

(I‘i; Pz‘) = (I'i,l'i)

which is always true by virtue of Lemma 3.
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Chapter 11

Example: Refraction Statics
Estimation

We have a data set of roughly 120 000 seismic first arrival travel time picks.
For certain offsets (the distance between sources and receivers), these travel
times are associated with head waves. Head waves propagate from the source
down to the base of the near-surface weathering layer, refract at the critical
angle, propagate along the interface, and then refract (again at the critical
angle) back up to the receiver, as illustrated in Figure (11.1). While propa-
gating along the interface, the head wave travels with a speed governed not
by the velocity of the weathering layer, but by the velocity of the layer below
this; call this the refracting layer. Because the refracting layer almost always
has a significantly higher velocity than the weathering layer, head waves of-
ten represent the first energy recorded by the receiver, once the offset is large
enough.

Source Receiver

Weathering Layer

Figure 11.1: Head wave geometry
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Head Waves

Figure 11.2: A common source gather showing head waves. The ordinate is
time measured in seconds, the abscissa is receiver index.

Examples of such waves can be seen in Figure (11.2) which is shot record
number 31 from Oz Yilmaz’s book. Clearly for some offsets, the first ar-
rival travel time is associated with the head wave, and for some offsets it is
associated with a reflection. For this data set you will be safe in assuming
that travel times associated with offsets in the range 1000-2000 are for head
waves.

In exploration seismology, these head wave arrival times are decomposed into
three pieces: a delay time from the source to the weathering layer (source
delays s), a delay time from the receiver to the weathering layer (receiver
delays r) and a propagation time along the interface associated with the
base of the weathering layer. Let us denote by ¢;; the total travel time for a
head wave propagating from source ¢ to receiver j. Then we have

t,‘j =3s; + T + /dﬁa (11.1)

where the integral is along the interface and o is the slowness of the refracting
layer, i.e., the layer below the weathering layer.

For the data set that you are going to work with, the refracting layer has a
constant slowness. Your task then is to take these travel time picks and use
them to infer the source and receiver delays, one for each source and receiver.
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This problem is linear so a reasonable path to pursue is a perturbation about
some initial model. Then we have

5tz'j = 58i + (57”3'. (112)

In the more general case of a non-constant refracting layer, this would be
instead
5tz'j = 58i + (57”3' + Z dkO'k (113)
k

where dy, is the length of the ray path in the k-th cell and oy is the (presumed
constant) slowness in the k-th. However, you will not be presented with this
complication.

All you need to do is formulate your problem as a linear least squares problem
0t = Adp (11.4)

where t is a vector containing head wave arrival time picks, and p is a vector
containing the model parameters, namely, the source and receiver delays.

The variations in the delay times are due to two effects: first there is topo-
graphical variation of both the surface and the base of the weathering layer,
and secondly there is the variation in the slowness of the weathering layer
itself. However, you are not being asked to resolve these complications. All
you need to compute are the source receiver delay times. Further, since the
problem is set up to be linear, you don’t really have to worry about the ini-
tial model that you use. An iterative least squares solver should eventually
converge for any starting model; the advantage of coming up with a “good”
starting model is simply that it speeds convergence. Beware, however, of
including null-space contributions in the starting model. Something sim-
ple would be wise, for example, a horizontal weathering layer with constant
slowness.

Here are the basic facts about the data set.

sources = 4b1

receivers = 5511

picks = 125198

refracting layer velocity = 5500

5 ms random noise added to all the picks, so you won’t fit the data exactly.

The travel time picks are in one file called picks_vconstant, and the z,y, z
coordinates of the sources and receivers are in the files rec_xyz and src_xyz.
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11.1 Solution

First, let us acknowledge Paul Docherty of Golden Geophysical for providing
us the synthetic data set. Our description of the statics problem above,
follows his 1993 SEG abstract. Paul also kindly provided us with the exact
model he used to generate the travel time picks. In Figure (11.3) you will see
the model and the solution computed with 90 CG iterations. It is essentially
a perfect reconstruction except for the slight fuzziness caused by the added
dms noise.
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11.1 Solution 163
Model
0.5
0.4
0.3
0.2
100 200 300 400 1000 2000 3000 4000 5000

Source Delays Receiver Delays

Conjugate Gradient
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Figure 11.3: Exact model (above) of source/receiver variations used to gen-
erate the travel time picks used in the final. Below is the solution computed
with a least squares version of CG using 90 iterations.
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Chapter 12

Example: Reflection Seismic
Inversion

In this chapter we will describe an example of a seismic waveform inversion
calculation. The technical details of this calculation are not important at
this state, we will come back to them later. The main goal of presenting
this result here is to let you see some real data and the sort of quantitative
inferences that can be drawn given a long list of assumptions.

The data are seismograms recorded in an array on the surface of the Earth
using a mechanical source of elastic energy (a vibrator truck excited with
a chirp signal). The forward modeling operator will be an elastic synthetic
seismogram calculation. In addition to the surface seismic data there are in-
situ measurements made at a single location, but with much higher spatial
resolution. To speed up the calculation we used a data set for which it is
reasonable to assume that the Earth is laterally invariant. This speeds up
the forward modeling calculation. The goal will be to assimilate these two
data sets and estimate the set of layered Earth models that fit the seismic
data and agree, in a certain sense, to the in-situ measurements. Rather than
produce a single “image” of the subsurface, we are more interesting in trying
to characterize this range of models.

Our canonical problem is
d=g(m)+e+f.

In the event that data errors (both random and systematic), and the prior dis-
tribution on models can be described by Gaussian distributions, the Bayesian
posterior probability is the normalized product of the following two functions:

(2m)—™ ox [
det Cp P

~5(9(m) — dgp,e)C5' (o(m) — dgp)]
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(12.1)

where d ;¢ is the vector of observed data which dimension is n, Cp is the
data covariance matrix and g(m) is the forward operator; and

GO [ ]
det Cys eXPp [—§(m N mpl"iOI")TCM1 (m — mprior)] )

(12.2)

where m is the number of model parameters and C, is the covariance matrix
describing the distribution of models about the prior model m i, If the
forward operator is linear, then the posterior distribution is itself a Gaussian.
If the forward operator is nonlinear, then the posterior is non-Gaussian.

Following Gouveia and Scales [GS98] we now sketch an example of the calcu-
lation of the posterior probability for an elastic waveform inversion problem
in which well logs (measurements made in a borehole) are used to calculate
an empirical Bayesian prior. All uncertainties (noise, model and theoretical)
are assumed to be Gaussian random variables.

Figure 12.1b shows several vertical component elastic shot records® extracted
from a 3D survey provided courtesy of the Reservoir Characterization Project
at the Colorado School of Mines. The data were recorded in the Sorrento
basin of Southwestern Colorado. The reservoir rock consists of sediments
which filled incised valleys during a series of pulses of rising and falling sea
level. The assumption of lateral homogeneity of the subsurface elastic prop-
erties is consistent with such a geologic scenario. This is the main reason we
chose this particular data set for analysis, since lateral homogeneity allows
for the use of fast propagator matrix based synthetic seismogram programs
for the forward modeling [GS98].

The source and receiver locations for the data acquisition are shown in Fig-
ure 12.1a. The black dots represent vibrator-source locations and empty dots
represent the receiver locations. The circle in the figure encompasses the five
shot gathers used in the calculation, for which lines one to eight are active.
In this example we will just show the results obtained with shot gather 1.
For a complete description of the results obtained with the Sorrento data the
reader is referred to [Gou96].

In addition to the surface seismic data we also have available in-situ measure-
ments from a nearby borehole. Some of these data are shown in Figure 12.2.
The borehole measurements have a resolution on the order of a meter or
less, orders of magnitude less than the wavelength of surface seismic waves.

LA shot record is the ensemble of seismograms (or traces) recorded for a given source

excitation.
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Figure 12.1: Several vertical component elastic shot records extracted from
a 3D survey provided courtesy of the Reservoir Characterization Project at

the Colorado School of Mines. The data were recorded in the Sorrento basin
of Southwestern Colorado.
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Example: Reflection Seismic Inversion
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Figure 12.2: Impedance and density logs used in the inversion. These rep-
resent in-situ measurements from a device lowered into the borehole. Such
measurements typically provide resolution at the sub-meter scale.
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Figure 12.3: We assume that the well log measurements are realizations of a
Gaussian random process. The mean is estimated by applying a running av-
erage to the data. The covariance is estimated by taking the autocorrelation
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of the fluctuations about this mean.
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Figure 12.4: The prior covariance matrices for, respectively, p-wave
impedance, s-wave impedance and density.

We could incorporate the borehole measurements into the calculation on the
same footing the surface seismic data, but this would have required modeling
the borehole measurements. As a simpler alternative the borehole data are
used to compute an empirical Bayesian prior. The idea is this: we don’t want
to constrain the earth models to be exactly equal to the values obtained by
the well log, but we do want them to reflect the statistical properties of the
log. So the goal is to find the range of layered Earth models that predict
the surface seismic data and are close, in a statistical sense, to the well log
measurements.

Let the model vector m be combination of p and s-wave impedances and
densities, one for each layer in the (presumed) laterally invariant Earth:
m = (my,, my,, m,). So if there are my layers there will be 3m; total model
parameters.? In order to make the calculations semi-analytic we assume that
the prior is an N-dimensional Gaussian distribution. The mean (Mmprior) is
estimated by applying a 200 m running average to the logs. The covariance
is estimated by computing the autocorrelation of the fluctuations of the well
log about mp,or Within a sliding window; this accounts for the fact that both
mean and variance of the well log change with depth. The double-arrow line
in the figure shows the length of the autocorrelation window. Once the cor-
relation C(7) is computed for a given window, the model covariance matrix
is given by

Cli,jl = €(G—1)

i+
1 2
= —— > L(k)L(k+j—1). (12.3)
N+1 hoi X

N is the length of the sliding window centered at depth idz, L(k) is the
well-log sample at depth k dz, and dz is the depth discretization interval.

Three covariance matrices result from this procedure: one for the p-wave

2We could use either wave velocities or impedances. For purposes of this discussion it
doesn’t matter. There are good reasons for choosing impedance however.
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170 Example: Reflection Seismic Inversion

impedance, one for the s-wave impedance and one for density (Figure 12.4).
These matrices are used to form a block diagonal covariance matrix Cp;. At
this point, no cross-correlation between different parameters is being con-
sidered. Note that the amplitudes along the main diagonal of this matrix
correlate with the variance of the fluctuations of the well log about mpyior-
For instance, the large fluctuations at depths around 950 m can be seen in
the covariance matrix by the large variances at indices around %, j = 70.

Next the covariance of the data errors must be estimated. In practice this is
difficult task since there are many sources of error and not all of them can
reasonably be assumed to be Gaussian random processes. We ignore this
difficulty and simply fit Gaussian process to 4 types of errors: ambient noise,
errors in the data processing,® uncertainty in the scaling of the synthetic
seismograms relative to the field data, and discretization errors. Without
going into any detail, which can be found in [GS98], for each source of noise
we generate an ensemble of “noise traces.” Sample covariances are then
computed for each ensemble. For example, for the ambient noise we identified
pieces of the seismograms that appeared to have no source-generated noise,
either very early or very late in the seismograms. Finally we assume that all
the errors are additive, so the covariance matrix in 12.1 is just the sum of
the individual covariances.

With these approximations to Cp and C}y, and using the mean of the well
logs as the mean of the prior distribution mpyior, We have the full Bayesian
posterior. In [GS98] a local optimization was used to find the peak of the
posterior; this is the so-called Maximum A Posteriori (MAP) model. In
general the MAP model is not the Bayes estimator for squared loss, but the
mean and the maximum would be the same for a Gaussian distribution. The
nonlinearity of the forward operator makes this problem technically non-
Gaussian, so the difference between the mean and the maximum might be
significant in some problems. In any case, the MAP model is computed by
minimizing the following objective function:

Om) = [(9(m) — dows)’ Cp " (g(m) — dups)
+ (M — Mprior)” Car ™" (M — Mprior)] - (12.4)

Once the MAP is found model we linearize the forward operator about this
model. This is equivalent to approximating the posterior by a Gaussian
centered about the MAP model. Within this approximation the posterior
covariance matrix is [Tar87]

Cw = [GTC5' G+ 0] (12.5)

3The only processing done is a so-called residual static correction, which accounts for
small-scale near-surface heterogeneities.
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Figure 12.5: The Bayes MAP model bracketed by plus or minus one standard
deviation. The error bars are derived from the posterior covariance matrix
and therefore take into account the prior information as well as informa-
tion about the forward modeling operator and the various sources of data
uncertainty.
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Figure 12.6: The posterior covariance matrix. The nonzero entries in the 6
off-diagonal blocks result from the action of the forward modeling operator
since the prior covariance matrix is block diagonal.

where G is the linearization of the forward operator about the MAP model,

The MAP model for a particular shot, bracketed by plus or minus one stan-
dard deviation (square roots of the main diagonal of Cpy) are shown in
Figure 12.5. These error bars do not tell us anything about the correlation
of the parameters, that information is contained in C'y; itself, which is shown
in Figure 12.6. To see quantitatively how much information is obtained via
the inversion procedure we can compare the prior and posterior error bars.
An example of such a comparison is shown in Figure 12.7. For density the
error bars are unchanged indicating that the data have little resolution of
density. Similarly, s-wave impedance is clearly less well resolved than p-wave
impedance. But this is not surprising since vertical component seismograms
were used in the inversion.

There are many ways of distilling information from the posterior. Figure 12.8
shows marginal probabilities for p-wave impedance at various depths for two
different subsets of data, one that had high signal/noise (left side) and one
that had low signal/noise (right).
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Figure 12.8: P-wave impedance marginals, at depths 0.6 km, 0.8 km, 1.0 km
and 1.2 km. (a) Marginals associated with the data extracted from line 4 of
shot gather 1. (b) shows the marginals associated with the data extracted
from line 7 of shot gather 5.



Chapter 13

Resolution-Variance Tradeoff

13.1 Estimating the derivative of a smooth
function

To motivate the discussion let us consider a simple example which shows the
tradeoff between resolution and variance and also the necessity of including
prior information.

Suppose we have noisy observations of a smooth function f at the equidistant
pointsa <z <...<z,<b

fi=fx)+e, i=1,..,n, (13.1)

where the errors €; are assumed to be iid N(0,0%).! We want to use these
observations to estimate the derivative f’. We define the estimator

F(@m,) = % (13.2)

where h is the distance between consecutive points, and z,,, = (2,41 + 2;)/2.
To measure the performance of the estimator (13.2) we use the mean squared
error (MSE). The variance and bias of (13.2) are

Varl ' (m)] = 75
B (@m) — f'm.)

f(ﬂfz'+1)h_ fn) f(@m) = f'(ci) = f'(@m,),

Independent, identically distributed random variables, normally distributed with mean

0 and variance 2.

Bias|f' (2, )]
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for some «; € [z;,x;+1]. We need more information to assess the size of the
bias. Let us assume that the second derivative is bounded on [a, b]

[f"(@)] < M, x €la,b].

It then follows that

~

|Bias[f"(zm,)]| = |/*(8:) (s — Bi)| < Mh,

for some [3; between «; and z,,,. We see that as h — 0 the variance goes to
infinity while the bias goes to zero. The MSE is bounded by
20° £ 1 . £l 2 20° 212

=3 < MSE[f'(zm,)] = Var[f'(zm, )] + Bias[f (zm,)]" < = + M*°h*. (13.3)
It is clear that choosing the smallest A possible does not lead to the best
estimate; the noise has to be taken into account. In fact, the lowest up-
per bound is obtained for h = 2'/4/o/M. The larger the variance of the
noise, the wider the spacing between the points. But, do we really need to
assume any more prior information in addition to model (13.1) to bound
the MSE? We do. Take any smooth function £ which vanishes at the points
Z1,...,%,. Then, the function f = f + k satisfies the same model as f, yet
their derivatives could be very different. For example, choose an integer m

and define )
k(z) = sin (M) ,

Then f(z;) + k(z;) = f(z:) and

2mm (27rm(a: - x1)>
cos 3 :

By choosing m large enough, we can make the difference f'(z,.) — f/(€m,)
as large as we want; without prior information we can not estimate the
derivative with a finite uncertainty.

13.2 A Surfer’s Guide to Backus-Gilbert The-
ory

The basic reference is [?]. The standard discrete inverse problem is
d=Gm+e (13.4)

where G is the Frechet derivative of the forward problem (an n by m matrix),
m is a vector of unknown model parameters, and d contains the observed

@



13.2 A Surfer’s Guide to Backus-Gilbert Theory 177

data. m is a vector in R™. However, it represents a discretization of the
model slowness s(r), which is a scalar function defined on a closed subset
of RP, D € (1,2,3...). It will be assumed that the set of all possible models
lies in some linear function space M.

It is useful to introduce an orthonormal basis of functions (the so-
called pixel functions) which span the model space M. Suppose that €
is completely covered by m closed, convex, mutually disjoint sets (cells)
o € RP : Q = Uo; such that o, No; = @ if i # j. The basis functions
are then defined to be

172

. ) ifr € g;
ha(r) = { 0 otherwise

where v; is the volume of the 7th cell. The choice of the normalization 1/[1/ %is
made to remove bias introduced by cell size. If a constant cell size is adopted,

v; /2 can be replaced with 1. Given the definition of h;, it is clear that

/Q hi(r)hy (r)dPr = 6,;.

Thus an arbitrary function can be written as an expansion in h;
o0
m(r) = m;hi(r) =m- h(r). (13.5)
i=1

In practice this sum will usually be truncated at a finite number of terms. For
infinite dimensional vectors it is more traditional to write the inner product
as (m, h(r)) but we will continue to use the dot notation.

A basic took of BG theory is the point spread function A. The point
spread function (PSF) is defined in a formal manner by noting that a local
average of the model m(r) can be obtained at any point ry by integrating
the model and a locally defined unimodular function

(m(re)) = /Q A(r, ro)m(r)dPr. (13.6)

Unimodular means that the function integrates to 1.

/QA(r,rO)dDr =1

Also, it is assumed that A(r,ry) € M for each ry € ) and that the support of
A is concentrated at the point ry. Naturally, the more accurately the model
is determined at each point, the more closely the PSF resembles a delta
function — at that point. So estimating the PSF is equivalent to estimating
a local average of the model. The more delta function-like is the PSF, the
more precise our estimate of the model.

@
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Like any other function in M, the PSF can be expanded in terms of h;.

A(r,ry) = iolai (ro) h; (r) = a(rg) - h(r).

Thus (13.5) and (13.6) imply that

o0

(m(re)) =Y a; (ro) m; = a(ro) - m. (13.7)

i=1

It is clear that one can construct a PSF which will yield a local average of
the model — any approximation to a delta function will do. Unfortunately,
there is a tradeoff between the sharpness of the PSF and the variance, or
RMS error, of the solution. To show this, BG assume that the local average
of the model is a linear function of the data

n

(m(ry)) = Z b; (rg)d; =b(ry)-d = (b(ry),Gm + e) (13.8)

=1

where b is to be determined. For the moment let’s neglect the noise—for zero
mean noise we can just take expectations. Comparing (13.7) and (13.8) one
sees that the expansion coefficients of the PSF are simply

a(ry) = GT'b (o) (13.9)

Now, how one measures the “width” of the PSF is largely a matter of taste.
Guust Nolet (J. Comp. Phys, 1985) makes the following natural choice

W (ry) = cD/ A(r,ro)? v —ro|°T dPr
%

where cp is a scale factor chosen to make W have as simple a form as possible.
For example, Nolet chooses c3 = 567/9. Plugging the definition of the pixel
functions and of the PSF into (13.9) it follows that

W (ro) = Y fiG}iGribj (r) by (ro) (13.10)
1,5,k
where

fi = CD/ ‘I‘ — I'()‘D—'—1 hz (I')2 dDI' =~ Cp |7% — I'()‘D—'—1
Q

and where 7; is the centroid of the ith cell. Equation (13.10) shows how
the width of the PSF depends on the b coefficients. Now all one needs is a
similar expression for the error of the average model value (m (ry))

n

o® = Var(m (r9)) = Y_ b; (ro) bj (ro) Cov(d;,d;) = b (ro) - b (ro) .

ij=1
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The last equality follows since if one assumes that the data are uncorrelated,
then weights can always be chosen such that Cov(d;,d;) = d;5. Thus, it
has been shown that both the width of the PSF and the variance of
the solution depend on b; Thus one cannot tighten up the PSF without
affecting the variance. The solution, at least formally, is to introduce a
tradeoff parameter, say w, and jointly minimize

J(w,rg) = W(re) + w?c?(ry).

This last problem is straightforwardly solved but note that to compute the
coefficients b which jointly minimize the variance and the width of the PSF
requires the solution of a (large) least squares problem at each point in the
model where the resolving power is desired. For large, sparse operators GG, a
far more efficient approach would be using the conjugate gradient methods
outlined in Chapter ?7.

13.3 Using the SVD

Now let us look at this tradeoff for a finite-dimensional problem using the
SVD. Let G be the forward modeling operator, now assumed to map R™ to
R™

d=Gm-+e
where e is an n-vector of random errors. The least squares estimated model
m is given by G'd, where GT is the pseudo-inverse of G.

The covariance of m is F[mm”].2 We can get a simple result for this matrix
using the singular value decomposition. The singular value decomposition of
G is

G =UAVT
where U is an orthogonal matrix of “data” eigenvectors (i.e., they span R")
and V is an orthogonal matrix of “model” eigenvectors (they span R™). A is
the n x m diagonal matrix of singular values \;. The pseudo-inverse of G is

Gl =vA'U"
where A~! where denotes the m x n diagonal matrix obtained by inverting
the nonzero singular values. To keep things simple, let’s assume that the
covariance of the data errors is just the identity matrix. This will let us look

at the structure of the covariance of m as a function of the forward operator
alone. It is easy to see that in this case

Cov(m) = E[tath’] = GICov(d)GT = VA2V = 3 A7 2v,vT
=1

2 Assuming that the errors are zero mean since then E[m] = E[G'd] = GTE[d] = 0.
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The last term on the right is the sum of the outer products of the columns of
V' (these are the model space eigenvectors). So the covariance can be seen as
a weighted projection operator onto the row space of GG, with weights given
by the inverse-square of the singular values.

With this it is not difficult to see that the j-th diagonal element of Cov(1hn),
which is the variance of the j-th model parameter is

m

Var(ry) = Y~ A7 (vi)]

i=1
where (v;); is the j-th component of the i-th eigenvector.

If the rank of G is less than m, say r, then all of the sums involving the
pseudo-inverse are really only over the r eigenvectors/eigenvalues. In partic-
ular

Var(fhy) = Y A7 (vi)] -
i=1

This is because G = UAVT = U, A, V" where the subscript 7 means that we
have eliminated the terms associated with zero singular values.

Now suppose we decide not to use all the » model eigenvectors spanning the
row space of G?3 For example we might need only p eigenvectors to actually
fit the data. Let us denote by mP the resulting estimate of m (which is
obviously confined to the p-dimensional subspace of R™ spanned by the first
p model singular vectors):

where u; is the i-th column of U (i.e., the i-th data eigenvector). Using the
result above for the variance of the j-th component of m we can see that

p
. - 2
Var(mf) = > A2 (vi); -
i=1
It follows that the variance of the j-th component of m? is monotonically
nondecreasing with p. So, while we can formally decrease the variance by us-
ing fewer eigenvectors, we end up with a less resolution because we won’t have
enough structure in the remaining eigenvectors to characterize the model.

In general we cannot compute the bias for an estimate of the true model
without taking into account the discretization, but let’s neglect this for the

3Remember that if a vector is in the null space of a matrix, then it is orthogonal
to all the rows of the matrix. Hence the row space and the null space are orthogonal
complements of one another.



13.3 Using the SVD 181

moment and assume that G represents the exact forward problem and that
the true model lies within R™. The bias of m" is the component of the true
model in the row space of G, assuming zero-mean errors.* So, apart from
the component of the true model in the row space of G, the bias of m? is

ul'd

N

bias(i?) = E[” —m'] = Y v,
i=p+1

‘E[fh — m] = E[G'Gm + G'd — m] = (G'G — I'm. Now G!G projects onto the null
space of G, so GtG — I projects onto the orthogonal complement of this, which is the row

space.
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